machine learning
文章平均质量分 91
c123_sensing
这个作者很懒,什么都没留下…
展开
-
激活函数(Activation Function)
我们知道,神经网络模型中,各隐藏层、包括输出层都需要激活函数(Activation Function)。我们比较熟悉的、常用的激活函数也有 ReLU、Sigmoid 等等。但是,对于各个激活函数的选取方法、区别特点还有几点需要特别注意的地方。今天就给大家总结一下常用激活函数 Sigmoid、tanh、ReLU、Leaky ReLU、ELU、Maxout 的关键知识点。1 . 为什么需要激活函数...原创 2018-08-09 10:41:14 · 4421 阅读 · 0 评论 -
【Keras】从两个实际任务掌握图像分类
我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程。今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务。...原创 2018-08-31 11:01:26 · 491 阅读 · 1 评论 -
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。object detection技术的演进:RCNN->Spp...原创 2018-08-31 10:59:36 · 150 阅读 · 0 评论 -
L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空”,那么天空飞翔的“鸟”就是模型可能收敛到的一个个最优解。在施加了模型正则化后,就好比将原假设空间(“天空”)缩...原创 2018-08-31 10:57:21 · 487 阅读 · 0 评论 -
如何在免费云端运行 Python 深度学习框架?
先说一下哦,结尾有福利!你懂的~热爱学习的你是否有过这样的经历:想自己动手搭建神经网络,却不知选择哪种工具?想配置深度学习框架 TensorFlow,却被复杂的配置步骤所困扰?想使用 GPU 加速训练,却经费有限无法实现高配置?······试想一下,如果有个免费的在线云端平台,既可以不用安装 TensorFlow 直接使用,又可以实现...转载 2018-08-30 18:42:47 · 1836 阅读 · 0 评论 -
支持向量机
支持向量机通俗导论(理解SVM的三层境界) 作者:July ;致谢:pluskid、白石、JerryLead。出处:结构之法算法之道blog。 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好...转载 2018-08-08 20:09:58 · 5548 阅读 · 0 评论 -
Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM
原 Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM 置顶 2017年09月23日 17:50:18 ...转载 2018-08-08 20:04:54 · 382 阅读 · 0 评论 -
支持向量机(SVM)——数据线性可分
关于机器学习算法的程序,在我的Github上,欢迎大家follow:Github地址:https://github.com/xuesongjaybluce SVM在之前的很长一段时间内是性能最好的分类器,它有严密而优美的数学基础作为支撑。在各种机器学习算法中,它是最不易理解的算法之一,要真正掌握它的原理有一定的难度。在本文中,我将带领大家通过一张图来理清SVM推导过程的核心过程。简...原创 2018-08-08 17:21:59 · 1146 阅读 · 0 评论 -
正则化(regularization)
正则化(regularization),是指在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。大条件数意味着舍入误差或其它误差会严重地影响问题的结果。 反问题有两种形式。最普遍的形式是已知系统和输出求输入,另一种系统未知的情况通常也被视为反问题。许多反问题很难被解决,但是其他反问题却很容易得到答案。显然,易于解决的问题不会...原创 2018-08-09 15:32:56 · 4400 阅读 · 0 评论 -
机器学习笔试题精选(六)
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。今天的笔试题主要涉及的知识点包括:降维、PCA、特征选择、随机森林、GBDT、集成学习等。Q1. 我们想要训练一个 ML 模型,样本数量有 100 万个,特征维...转载 2018-08-09 14:59:05 · 4303 阅读 · 0 评论 -
机器学习笔试题精选(五)
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。今天的笔试题主要涉及的知识点包括:SVM、高斯核、F1 score、Leave-One_out 交叉验证、神经网络、隐马尔可夫模型等。Q1. 假设我们在支持向量...转载 2018-08-09 14:57:40 · 3748 阅读 · 0 评论 -
机器学习笔试精选题(四)
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。今天,红色石头带大家继续“死磕”相关笔试题!各个击破!Q1. 在 n 维空间中(n > 1),下列哪种方法最适合用来检测异常值?A. 正态概率图B...转载 2018-08-09 14:55:55 · 8837 阅读 · 0 评论 -
【通俗易懂】机器学习中 L1 和 L2 正则化的直观解释
原 【通俗易懂】机器学习中 L1 和 L2 正则化的直观解释 ...转载 2018-08-09 14:53:44 · 669 阅读 · 0 评论 -
机器学习笔试题精选(三)
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。Q1. 关于“回归(Regression)”和“相关(Correlation)”,下列说法正确的是?注意:x 是自变量,y 是因变量。A. 回归和相关在 x 和...原创 2018-08-09 14:51:14 · 5820 阅读 · 0 评论 -
机器学习笔试题精选(二)
上次 机器学习笔试题精选(一)中,我们详细解析了机器学习笔试 15 道题。今天,带大家继续“死磕”相关笔试题!Q1. 假如我们使用 Lasso 回归来拟合数据集,该数据集输入特征有 100 个(X1,X2,…,X100)。现在,我们把其中一个特征值扩大 10 倍(例如是特征 X1),然后用相同的正则化参数对 Lasso 回归进行修正。那么,下列说法正确的是?...原创 2018-08-09 14:47:07 · 1980 阅读 · 0 评论 -
机器学习笔试题精选(一)
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。红色石头准备在公众号连载一些机器学习笔试题系列文章,希望能够对大家有所帮助!Q1. 在回归模型中,下列哪一项在权衡欠拟合(under-fitting)和过拟合(ov...原创 2018-08-09 14:40:20 · 1477 阅读 · 0 评论 -
梯度下降算法的理解
什么是梯度?对于梯度下降算法(Gradient Descent Algorithm),我们都已经很熟悉了。无论是在线性回归(Linear Regression)、逻辑回归(Logistic Regression)还是神经网络(Neural Network)等等,都会用到梯度下降算法。我们先来看一下梯度下降算法的直观解释:假设我们位于黄山的某个山腰处,山势连绵...原创 2018-08-09 11:38:36 · 3169 阅读 · 3 评论 -
【Keras】基于SegNet和U-Net的遥感图像语义分割
上两个月参加了个比赛,做的是对遥感高清图像做语义分割,美其名曰“天空之眼”。这两周数据挖掘课期末project我们组选的课题也是遥感图像的语义分割,所以刚好又把前段时间做的成果重新整理和加强了一下,故写了这篇文章,记录一下用深度学习做遥感图像语义分割的完整流程以及一些好的思路和技巧。数据集首先介绍一下数据,我们这次采用的数据集是CCF大数据比赛提供的数据(2015年中国南方某城市的高清遥感图像...原创 2018-08-31 11:03:36 · 1407 阅读 · 4 评论