自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (4)
  • 收藏
  • 关注

多tomcat服务器配置教程

以下教程以10.68.4.38:22服务器为例 1、tomcat项目都配置到目录/service 下 2、命名规则 tomcat-8.0.36-项目名 3、新增tomcat项目操作流程:(1)拷贝基础tomcat包 /usr/local/apache-tomcat-8.0.28 改成新的名字到目录/service 下,          如:cp -rf /us...

2017-02-17 17:56:19 117

msgpack-java-master

msgpack - MessagePack is an extremely efficient object serialization library. It's like JSON, but very fast and small.

2014-09-19

msgpack-python-0.4.2.tar

======================= MessagePack for Python ======================= :author: INADA Naoki :version: 0.4.1 :date: 2014-02-17 .. image:: https://secure.travis-ci.org/msgpack/msgpack-python.png :target: https://travis-ci.org/#!/msgpack/msgpack-python What's this ------------ `MessagePack <http://msgpack.org/>`_ is a fast, compact binary serialization format, suitable for similar data to JSON. This package provides CPython bindings for reading and writing MessagePack data. Install --------- You can use ``pip`` or ``easy_install`` to install msgpack:: $ easy_install msgpack-python or $ pip install msgpack-python PyPy ^^^^^ msgpack-python provides pure python implementation. PyPy can use this. Windows ^^^^^^^ When you can't use binary distribution, you need to install Visual Studio or Windows SDK on Windows. (NOTE: Visual C++ Express 2010 doesn't support amd64. Windows SDK is recommanded way to build amd64 msgpack without any fee.) Without extension, using pure python implementation on CPython runs slowly. Notes ----- Note for msgpack 2.0 support ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ msgpack 2.0 adds two types: *bin* and *ext*. *raw* was bytes or string type like Python 2's ``str``. To distinguish string and bytes, msgpack 2.0 adds *bin*. It is non-string binary like Python 3's ``bytes``. To use *bin* type for packing ``bytes``, pass ``use_bin_type=True`` to packer argument. >>> import msgpack >>> packed = msgpack.packb([b'spam', u'egg'], use_bin_type=True) >>> msgpack.unpackb(packed, encoding='utf-8') ['spam', u'egg'] You shoud use it carefully. When you use ``use_bin_type=True``, packed binary can be unpacked by unpackers supporting msgpack-2.0. To use *ext* type, pass ``msgpack.ExtType`` object to packer. >>> import msgpack >>> packed = msgpack.packb(msgpack.ExtType(42, b'xyzzy')) >>> msgpack.unpackb(packed) ExtType(code=42, data='xyzzy') You can use it with ``default`` and ``ext_hook``. See below. Note for msgpack 0.2.x users ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The msgpack 0.3 have some incompatible changes. The default value of ``use_list`` keyword argument is ``True`` from 0.3. You should pass the argument explicitly for backward compatibility. `Unpacker.unpack()` and some unpack methods now raises `OutOfData` instead of `StopIteration`. `StopIteration` is used for iterator protocol only. How to use ----------- One-shot pack & unpack ^^^^^^^^^^^^^^^^^^^^^^ Use ``packb`` for packing and ``unpackb`` for unpacking. msgpack provides ``dumps`` and ``loads`` as alias for compatibility with ``json`` and ``pickle``. ``pack`` and ``dump`` packs to file-like object. ``unpack`` and ``load`` unpacks from file-like object. :: >>> import msgpack >>> msgpack.packb([1, 2, 3]) '\x93\x01\x02\x03' >>> msgpack.unpackb(_) [1, 2, 3] ``unpack`` unpacks msgpack's array to Python's list, but can unpack to tuple:: >>> msgpack.unpackb(b'\x93\x01\x02\x03', use_list=False) (1, 2, 3) You should always pass the ``use_list`` keyword argument. See performance issues relating to use_list_ below. Read the docstring for other options. Streaming unpacking ^^^^^^^^^^^^^^^^^^^ ``Unpacker`` is a "streaming unpacker". It unpacks multiple objects from one stream (or from bytes provided through its ``feed`` method). :: import msgpack from io import BytesIO buf = BytesIO() for i in range(100): buf.write(msgpack.packb(range(i))) buf.seek(0) unpacker = msgpack.Unpacker(buf) for unpacked in unpacker: print unpacked Packing/unpacking of custom data type ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ It is also possible to pack/unpack custom data types. Here is an example for ``datetime.datetime``. :: import datetime import msgpack useful_dict = { "id": 1, "created": datetime.datetime.now(), } def decode_datetime(obj): if b'__datetime__' in obj: obj = datetime.datetime.strptime(obj["as_str"], "%Y%m%dT%H:%M:%S.%f") return obj def encode_datetime(obj): if isinstance(obj, datetime.datetime): return {'__datetime__': True, 'as_str': obj.strftime("%Y%m%dT%H:%M:%S.%f")} return obj packed_dict = msgpack.packb(useful_dict, default=encode_datetime) this_dict_again = msgpack.unpackb(packed_dict, object_hook=decode_datetime) ``Unpacker``'s ``object_hook`` callback receives a dict; the ``object_pairs_hook`` callback may instead be used to receive a list of key-value pairs. Extended types ^^^^^^^^^^^^^^^ It is also possible to pack/unpack custom data types using the msgpack 2.0 feature. >>> import msgpack >>> import array >>> def default(obj): ... if isinstance(obj, array.array) and obj.typecode == 'd': ... return msgpack.ExtType(42, obj.tostring()) ... raise TypeError("Unknown type: %r" % (obj,)) ... >>> def ext_hook(code, data): ... if code == 42: ... a = array.array('d') ... a.fromstring(data) ... return a ... return ExtType(code, data) ... >>> data = array.array('d', [1.2, 3.4]) >>> packed = msgpack.packb(data, default=default) >>> unpacked = msgpack.unpackb(packed, ext_hook=ext_hook) >>> data == unpacked True Advanced unpacking control ^^^^^^^^^^^^^^^^^^^^^^^^^^ As an alternative to iteration, ``Unpacker`` objects provide ``unpack``, ``skip``, ``read_array_header`` and ``read_map_header`` methods. The former two read an entire message from the stream, respectively deserialising and returning the result, or ignoring it. The latter two methods return the number of elements in the upcoming container, so that each element in an array, or key-value pair in a map, can be unpacked or skipped individually. Each of these methods may optionally write the packed data it reads to a callback function: :: from io import BytesIO def distribute(unpacker, get_worker): nelems = unpacker.read_map_header() for i in range(nelems): # Select a worker for the given key key = unpacker.unpack() worker = get_worker(key) # Send the value as a packed message to worker bytestream = BytesIO() unpacker.skip(bytestream.write) worker.send(bytestream.getvalue()) Note about performance ------------------------ GC ^^ CPython's GC starts when growing allocated object. This means unpacking may cause useless GC. You can use ``gc.disable()`` when unpacking large message. `use_list` option ^^^^^^^^^^^^^^^^^^ List is the default sequence type of Python. But tuple is lighter than list. You can use ``use_list=False`` while unpacking when performance is important. Python's dict can't use list as key and MessagePack allows array for key of mapping. ``use_list=False`` allows unpacking such message. Another way to unpacking such object is using ``object_pairs_hook``. Test ---- MessagePack uses `pytest` for testing. Run test with following command: $ py.test .. vim: filetype=rst

2014-09-19

pycurl-7.19.0.tar

License ------- Copyright (C) 2001-2008 by Kjetil Jacobsen <kjetilja at gmail.com> Copyright (C) 2001-2008 by Markus F.X.J. Oberhumer <markus at oberhumer.com> All rights reserved. PycURL is dual licensed under the LGPL and an MIT/X derivative license based on the cURL license. A full copy of the LGPL license is included in the file COPYING. A full copy of the MIT/X derivative license is included in the file COPYING2. You can redistribute and/or modify PycURL according to the terms of either license.

2014-09-19

tornado-2.4.1.tar

Tornado ======= Tornado is an open source version of the scalable, non-blocking web server and and tools that power FriendFeed. Documentation and downloads are available at http://www.tornadoweb.org/ Tornado is licensed under the Apache Licence, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0.html). Automatic installation ---------------------- Tornado is listed in PyPI and can be installed with pip or easy_install. Note that the source distribution includes demo applications that are not present when Tornado is installed in this way, so you may wish to download a copy of the source tarball as well. Manual installation ------------------- Download https://github.com/downloads/facebook/tornado/tornado-2.3.tar.gz tar xvzf tornado-2.3.tar.gz cd tornado-2.3 python setup.py build sudo python setup.py install The Tornado source code is hosted on GitHub: https://github.com/facebook/tornado On Python 2.6 and 2.7, it is also possible to simply add the tornado directory to your PYTHONPATH instead of building with setup.py, since the standard library includes epoll support. Prerequisites ------------- Tornado runs on Python 2.5, 2.6, 2.7 and 3.2. On Python 2.6 and 2.7, there are no dependencies outside the Python standard library, although PycURL (version 7.18.2 or higher required; version 7.21.1 or higher recommended) may be used if desired. On Python 2.5, PycURL is required, along with simplejson and the Python development headers (typically obtained by installing a package named something like python-dev from your operating system). On Python 3.2, the distribute package is required. Note that Python 3 support is relatively new and may have bugs. Platforms --------- Tornado should run on any Unix-like platform, although for the best performance and scalability only Linux and BSD (including BSD derivatives like Mac OS X) are recommended.

2014-09-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除