生产者消费者模式
生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
Weakref模块
weakref 模块允许Pvthon程序员创建对象的 weak references在下文中,术语 referent 表示由弱引用引用的对象。
对对象的弱引用不能保证对象存活:当对像的引用只剩弱引用时,garbage colection 可以销毁引用并将其内存重用于其他内容。但是,在实际销毁对象之前,即使没有强引用,弱引用也一直能返回该对象。
弱引用的主要用途是实现保存大对象的高速缓存或映射,但又不希望大对象仅仅因为它出现在高速缓存或映射中而保持存活。
g对象详解
在 Flask 中,g 是一个全局对象,可以在整个应用程序中使用。它是一个轻量级的容器,可以用来存储应用程序中的任意数据。g 对象是 Flask 应用程序上下文中的一部分,它在每个请求期间自动创建和销毁。
在 Flask 应用程序中使用 g 时,通常需要将数据存诸到 g 对象中,并在应用程序的其他部分中检索它。g 对象的主要目的是在请求之间共享数据。这些数据通常是应用程序的配置设置,数据库连接,授权令牌等。当需要在多个请求之间共享数据时,使用 g 对象可以避免在每个请求中重复创建和销毁对象,从而提高应用程序的性能。
os,sys,psutil详解
os:os 模块是 Python 的内置模块,提供了与操作系统交互的功能。它包含了许多操作系统相关的函数和常O5量,如文件和目录操作、进程管理、环境变量、路径操作等。 5 模块可以用于跨平台地处理文件系统、运行系统命令等。
sys: sys 模块也是 Python 的内置模块,提供了与 Python 解释器和运行环境交互的功能。它包含了一些与解sys.argv 可以获取命令行参数, sys.path 可以操作 Python 模块的释器和系统相关的函数和变量。例如,通过搜索路径, sys.exit() 可以退出程序等。sys 模块通常用于与 Python 解释器和运行环境交互的场景。
psutil: psuti是一个第三方库,它提供了一个跨平台的接口,用于获取系统进程和系统资源利用情况的信息。与 05和 sys不同 puti 要用于对系统资源的查询和监控,如 CPU使用率、内存使用率、磁盘利用率和网络信息等。它提供了方便的函数和方法,使得获取系统资源的信息更加简单和统一。
flask的蓝图详解
Flask蓝图(Flask Blueprint)是一种用于构建可重用的、模块化的Flask应用程序的机制。它允许开发人员将应用程序划分为多个小块,每个块负责处理不同的路由和逻辑。具体步骤如下:
1.模块化组织:Flask蓝图允许你将应用程序的功能按模块划分,并将每个模块拥绑成一个蓝图对象。每个蓝图对象可以定义自己的路由、处理函数、模板、静态文件等,从而实现更好的代码组织和可维护性。
2.路由继承:蓝图可以定义自己的路由,包括URL路径和对应的处理函数。它们还可以继承父级蓝图的路由,从而允许嵌套和层次化的路由定义。这样可以轻松地构建具有复杂URL结构的应用程序。
3.蓝图注册:在Flask应用程序中注册蓝图非常简单。你可以使用 app.register blueprint()方法将蓝图对象注册到应用程序中。注册后,蓝图中定义的路由和逻辑将与应用程序关联起来,并在应用程序的URL映射中生效
4.蓝图模板和静态文件:蓝图允许你定义自己的模板和静态文件目录。这使得不同的蓝图可以有自己的模板和静态文件,使代码更加模块化和可维护。在蓝图中,可以使用 template folder 和 static folder 参数来指定模板和静态文件的所在目录
5.蓝图钩子:蓝图还支持类似于应用程序级别的钩子函数,称为蓝图钩子。你可以在蓝图中定义 before request 和0fter request 等函数,用于在请求之前或之后执行一些预处理或后处理操作。
通过使用Flask蓝图,可以更好地组织和管理你的Flask应用程席。它提供了一种模块化的方式来划分应用程席的功能,并实现代码和功能的复用。特别是在构建大型应用程序或分解复杂功能时,蓝图可以帮助你保持代码的清晰性和可维护性。
Flask的调试模式
在 Flask 中,调试模式(debug mode)是一种开发模式,用于帮助开发者更轻松地调试和定位应用程序中的问题。当调试模式启用时,Flask 会提供详细的错误信息、自动重载应用程序,并在发生错误时显示调试页面。
app.run(debug=True)
启用调试模式后,如果应用程序中发生错误,Flask 将会向客户端返回一个带有详细错误信息的调试页面。这个页面会显示错误栈追踪信息、HTTP 请求和响应的详细内容等。
Mysql冗余数据
冗余数据的处理是由数据库管理员和开发人员在设计数据库时负责实现的。MySOL本身并不会自动处理元余数据,因山需要通过合理的数据库设计和管理来避免冗余数据的产生。
Flask的跨域问题
在开发Web应用程序时,跨域问题是一个很常见的问题。由于浏览器的同源策略限制,请求的发出必须要在当前域名下发出,否则就会受到限制。这就造成了不同域名下服务器之间的数据交互变得非常困难
为了解决这一问题,一种常用的方式是在服务器端做出相应的处理,即设置相应的跨域请求响应头。而Flask-Cors是一个优秀的解决跨域问题的Python库。
Nginx和uWSGI是常用于部署Python Web应用程序的组件。
Nginx是一个高性能的HTTP和反向代理服务器。它可以用于静态文件服务、负载均衡、反向代理等场景。在部署Python Web应用程序时,Nginx通常用作前端Web服务器,处理HTTP请求和静态文件,并将动态请求转发给uWSGI。
uWSGI是一个Web服务器网关接口(Web Server Gateway Interface,WSGI)服务器,它可以将HTTP请求从Nginx转发给Python应用程序。它与Python Web应用程序之间建立起连接,处理Web应用程序的请求和响应。uWSGI可以独立部署,也可以与Nginx结合使用,以提供高性能和可扩展性。
Celery是一个常用的Python分布式任务队列框架,
用于异步处理和调度任务。它提供了高度可扩展的架构,用于处理大量并发的任务,并支持任务的延迟执行和调度。
-
任务(Tasks):任务是Celery中的最小执行单元,它是一个独立的函数或方法,可进行异步执行。你可以定义各种任务,例如发送邮件、处理图像等。
-
任务队列(Task Queue):任务队列是存储要执行的任务的数据结构。Celery使用消息中间件(如RabbitMQ、Redis)作为任务队列,允许任务在多个工作进程中进行消费和分发。
-
任务调度器(Task Scheduler):Celery提供了调度器(beat)来执行预定计划的任务。它基于配置文件或代码定义的时间间隔,自动启动并调度指定的任务。
-
异步执行:通过使用Celery,你可以将任务发送到任务队列,然后由工作进程异步执行任务,这样可以实现异步和并发处理。
request 全局变量
在Web开发中,request
是一个全局变量,用于访问当前HTTP请求的相关信息。在许多Web框架中,如Flask和Django,request
对象提供了对请求头、请求方法、请求参数、Cookie等的访问。
jsonify
函数的用途和意义主要有以下几个方面:
-
将数据序列化为JSON格式:
jsonify
函数将Python对象转换为JSON格式的响应体。在构建API时,常常需要将数据以JSON格式返回给客户端,以便客户端能够方便地解析和使用这些数据。 -
简化构建API响应:使用
jsonify
函数可以简化构建API响应的过程,不需要手动进行JSON序列化和设置Response的Content-Type。jsonify
函数会自动处理这些细节,使代码更简洁易读。 -
设置正确的Content-Type:
jsonify
函数会自动设置响应的Content-Type为application/json
,确保客户端正确解析响应,以及让浏览器等客户端知道所返回的数据类型为JSON。 -
支持更复杂的数据结构:
jsonify
函数可以处理更复杂的数据结构,如嵌套字典、列表等。它会递归地将Python对象转换为嵌套的JSON格式数据,使得返回的响应能够包含更丰富的信息。
Werkzeug是一个WSGI(Web服务器网关接口)工具库
它是Python Web框架Flask的底层依赖之一。Werkzeug提供了一组用于处理HTTP请求和响应的工具,包括路由匹配、HTTP方法处理、请求参数解析、响应生成等。
以下是Werkzeug的一些主要特性:
-
路由匹配:Werkzeug提供了路由系统,允许你定义URL规则和相应的处理函数。通过使用路由系统,你可以将不同的URL映射到不同的视图函数,实现URL的分发和处理。
-
请求解析和处理:Werkzeug提供了对HTTP请求的解析和处理功能。它可以解析请求头、请求方法、请求参数、Cookie等,并提供了一组方便的API来访问这些信息。
-
响应生成:Werkzeug支持生成各种类型的HTTP响应,包括普通的文本响应、JSON响应、重定向、文件下载等。你可以使用Werkzeug提供的函数来创建和修改响应对象,然后返回给客户端。
-
中间件支持:Werkzeug允许你使用中间件来处理请求和响应。中间件可以在请求到达应用程序之前或响应发送给客户端之前,对请求和响应进行一系列的操作和扩展。