【蓝桥第四周】均分纸牌

1098 均分纸牌  2002年NOIP全国联赛提高组
题目描述 Description
      有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
   移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
   现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
 例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
 移动3次可达到目的:
 从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入描述 Input Description
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出描述 Output Description
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。

样例输入 Sample Input
4
9 8 17 6
样例输出 Sample Output
3


[解题思路]

       把所有牌堆减去平均数,就得到一串有正有负的数字,从左至右把这些数字逐渐累加,如果过非零说明要有一次交换(如果为负,说明要从右边拿过来,为正则说明要从左边拿过去,为零则说明前面的交换恰好完成)

[代码实现]

#include<iostream>
using namespace std;
int main()
{
	int n ,ave=0,a[101];
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		ave+=a[i];
	}
	ave /= n;
	int step=0;
	for(int i=1;i<=n-1;i++)
	{
		if(a[i] != ave)
		{
			a[i+1] += a[i]-ave;
			step++;
		}
	}
	cout<<step<<endl;
	getchar();
	return 0;
}

上面的代码可以优化,从牌堆两边同时操作,当i不小于j时结束

[代码实现]

#include<iostream>
using namespace std;
int main()
{
    int n,a[101],ave=0;
    cin >> n;
    for(int i=1; i<=n; i++)
    {
            cin >> a[i];
            ave += a[i];
    }
    ave/=n;
    int step=0;
    for(int i=1,j=n; i<j; i++, j--)
    {
        if(a[i]!=ave)
        {
            a[i+1] += (a[i] - ave);
            step++;
        }

        if(a[j]!=ave)
        {
            a[j-1] += (a[j] - ave);
            step++;
        }
       
    }
    cout << step << endl;
    getchar();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值