1098 均分纸牌 2002年NOIP全国联赛提高组
题目描述 Description
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入描述 Input Description
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出描述 Output Description
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。
样例输入 Sample Input
4
9 8 17 6
样例输出 Sample Output
3
[解题思路]
把所有牌堆减去平均数,就得到一串有正有负的数字,从左至右把这些数字逐渐累加,如果过非零说明要有一次交换(如果为负,说明要从右边拿过来,为正则说明要从左边拿过去,为零则说明前面的交换恰好完成)
[代码实现]
#include<iostream>
using namespace std;
int main()
{
int n ,ave=0,a[101];
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
ave+=a[i];
}
ave /= n;
int step=0;
for(int i=1;i<=n-1;i++)
{
if(a[i] != ave)
{
a[i+1] += a[i]-ave;
step++;
}
}
cout<<step<<endl;
getchar();
return 0;
}
上面的代码可以优化,从牌堆两边同时操作,当i不小于j时结束。
[代码实现]
#include<iostream>
using namespace std;
int main()
{
int n,a[101],ave=0;
cin >> n;
for(int i=1; i<=n; i++)
{
cin >> a[i];
ave += a[i];
}
ave/=n;
int step=0;
for(int i=1,j=n; i<j; i++, j--)
{
if(a[i]!=ave)
{
a[i+1] += (a[i] - ave);
step++;
}
if(a[j]!=ave)
{
a[j-1] += (a[j] - ave);
step++;
}
}
cout << step << endl;
getchar();
return 0;
}