vijos 小胖守皇宫

这篇博客探讨了如何使用树形动态规划(DP)解决一个关于放置守卫的皇宫问题。博客介绍了三个状态定义:自己不放且父亲不放、自己放、自己不放但父亲放,并给出了相应状态转移方程。博主分享了实现这一策略的代码。
摘要由CSDN通过智能技术生成

点击打开题目

树形DP
显然会想到某个点放或不放守卫来定义状态,但在不放的情况下,需要分类讨论是父亲放还是一个儿子放,于是定义以下状态:

f[root][0]表示自己不放,父亲也不放
f[root][1]表示自己放
f[root][2]表示自己不放,父亲放

则状态转移方程为:

f[root][0]+=min(f[son][0],f[son][1])(如果所有儿子都不放,则f[root][0]应加上s=min(f[son][1]-f[son][0]))

f[root][1]+=min(f[son][1],f[son][2])(f[root][1]赋初值为在此放的花费)

f[root][2]+=min(f[son][0],f[son][1])

代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值