【学校OJ】组合数学 无关的元素

问题 I(2716): 无关的元素

时间限制: 1 Sec   内存限制: 128 MB
提交: 193   解决: 42
[ 提交][ 状态][ 我的提交]

题目描述

对于给定的n个数a1,a2,...,an,依次求出相邻两数之和,将得到一个新数列。重复上述操作,最后结果将变成一个数。问这个数除以m的余数与哪些数无关?

例如n=3,m=2时,第一次求和得到a1+a2,a2+a3,再次求和得到a1+2a2+a3,它除以2的余数和a2无关。

输入

第1行:2个整数n和m(1<=n<=10^5, 2 <=m<=10^9)

输出

按升序列出与m无关的元素的序号,每行1个。

若与全部元素无关,输出0

样例输入

 (如果复制到控制台无换行,可以先粘贴到文本编辑器,再复制)

5 3

样例输出

3

提示


    算算快有一个月没写博客了,必须赶快补一补,再不诈尸就火化了。。。话说最近在复习组合数学,偶然间发现以前一道没有做出来的题,拿出来做做,没想到一不小心就对了。。。

    这一道题呢明显是让我们求合并完后每一项是否是m的倍数,考虑到合并完后可能一定会超出int甚至long long,所以我们绝对不能暴力模拟(好像说了一堆废话),先不说怎么判断倍数,想个办法保存合并后的系数都比较困难。其实,我们可以用分解质因数的方法存储,次数并不会很多,比较倍数就只需看每个质因子次数即可。而显而易见的,合并完后的系数分布是杨辉三角的第n排,也就是C(n-1,i),又想起组合数的另一个公式:

    C(i,j)=i!/(j!*(i-j)!)

    可以发现第10^5排的质因子并不会超过10^5,我们于是可以筛出一个素数表。又因为只需判断是否是m的倍数,所以只需存储与m相关的质因数。m≤10^9,可以验证2*3*5*7*11*13*17*19*23*29>m,前10个质数相乘就大于了m,意味着m的质因子种数最多为9,这样下来,计算量并不大。求解第n排的C值也可以用上面那个公式,可以推出:

    C(i,j)=C(i,j-1)/j*(i-j+1)

    这意味着我们可以用递推的方式计算这一排组合数了。

    所以你们想要的代码。。。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=100000;
int p[10005],cnt;
bool h[N+5];
int n,m,c;
int mys[15],mgs[15],ngs[15],cmt;
void add(int a,int wh)
{
	for(int i=1;i<=cmt&&a>1;i++)
	{
		while(a%p[mys[i]]==0)
		{
			ngs[i]+=wh;
			a/=p[mys[i]];
		}
	}
}
int main()
{
	for(int i=2;i<=N;i++)
	{
		if(!h[i])
			p[++cnt]=i;
		for(int j=1;j<=cnt&&i*p[j]<=N;j++)
			h[i*p[j]]=1;
	}
	scanf("%d%d",&n,&m);
	n--;
	if(m==1){printf("0");return 0;}
	for(int i=1;i<=cnt&&m>1;i++)
	{
		if(m%p[i]==0)
		{
			mys[++cmt]=i;
			while(m%p[i]==0)
			{
				mgs[cmt]++;
				m/=p[i];
			}
		}
	}
	if(m>1){printf("0");return 0;}
	for(int i=1;i<=n;i++)
	{
		add(n-i+1,1);
		add(i,-1);
		int f=1;
		for(int j=1;j<=cmt;j++)
		{
			if(ngs[j]<mgs[j])
			{
				f=0;
				break;
			}
		}
		if(f==1)
		{
			c=1;
			printf("%d\n",i+1);
		}
	}
	if(!c){printf("0");return 0;}
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值