问题 I(2716): 无关的元素
时间限制: 1 Sec 内存限制: 128 MB提交: 193 解决: 42
[ 提交][ 状态][ 我的提交]
题目描述
对于给定的n个数a1,a2,...,an,依次求出相邻两数之和,将得到一个新数列。重复上述操作,最后结果将变成一个数。问这个数除以m的余数与哪些数无关?
例如n=3,m=2时,第一次求和得到a1+a2,a2+a3,再次求和得到a1+2a2+a3,它除以2的余数和a2无关。
输入
第1行:2个整数n和m(1<=n<=10^5, 2 <=m<=10^9)
输出
按升序列出与m无关的元素的序号,每行1个。
若与全部元素无关,输出0
样例输入
(如果复制到控制台无换行,可以先粘贴到文本编辑器,再复制)
5 3
样例输出
3
提示
算算快有一个月没写博客了,必须赶快补一补,再不诈尸就火化了。。。话说最近在复习组合数学,偶然间发现以前一道没有做出来的题,拿出来做做,没想到一不小心就对了。。。
这一道题呢明显是让我们求合并完后每一项是否是m的倍数,考虑到合并完后可能一定会超出int甚至long long,所以我们绝对不能暴力模拟(好像说了一堆废话),先不说怎么判断倍数,想个办法保存合并后的系数都比较困难。其实,我们可以用分解质因数的方法存储,次数并不会很多,比较倍数就只需看每个质因子次数即可。而显而易见的,合并完后的系数分布是杨辉三角的第n排,也就是C(n-1,i),又想起组合数的另一个公式:
C(i,j)=i!/(j!*(i-j)!)
可以发现第10^5排的质因子并不会超过10^5,我们于是可以筛出一个素数表。又因为只需判断是否是m的倍数,所以只需存储与m相关的质因数。m≤10^9,可以验证2*3*5*7*11*13*17*19*23*29>m,前10个质数相乘就大于了m,意味着m的质因子种数最多为9,这样下来,计算量并不大。求解第n排的C值也可以用上面那个公式,可以推出:
C(i,j)=C(i,j-1)/j*(i-j+1)
这意味着我们可以用递推的方式计算这一排组合数了。
所以你们想要的代码。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=100000;
int p[10005],cnt;
bool h[N+5];
int n,m,c;
int mys[15],mgs[15],ngs[15],cmt;
void add(int a,int wh)
{
for(int i=1;i<=cmt&&a>1;i++)
{
while(a%p[mys[i]]==0)
{
ngs[i]+=wh;
a/=p[mys[i]];
}
}
}
int main()
{
for(int i=2;i<=N;i++)
{
if(!h[i])
p[++cnt]=i;
for(int j=1;j<=cnt&&i*p[j]<=N;j++)
h[i*p[j]]=1;
}
scanf("%d%d",&n,&m);
n--;
if(m==1){printf("0");return 0;}
for(int i=1;i<=cnt&&m>1;i++)
{
if(m%p[i]==0)
{
mys[++cmt]=i;
while(m%p[i]==0)
{
mgs[cmt]++;
m/=p[i];
}
}
}
if(m>1){printf("0");return 0;}
for(int i=1;i<=n;i++)
{
add(n-i+1,1);
add(i,-1);
int f=1;
for(int j=1;j<=cmt;j++)
{
if(ngs[j]<mgs[j])
{
f=0;
break;
}
}
if(f==1)
{
c=1;
printf("%d\n",i+1);
}
}
if(!c){printf("0");return 0;}
}