【HDU 1686】KMP+贪心 剪花布条(一般题)

题目描述

一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案。对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢?

输入

输入中含有一些数据,分别是成对出现的花布条和小饰条,其布条都是用可见ASCII字符表示的,可见的ASCII字符有多少个,布条的花纹也有多少种花样。花纹条和小饰条不会超过1000个字符长。如果遇见#字符,则不再进行工作。

输出

输出能从花纹布中剪出的最多小饰条个数,如果一块都没有,那就老老实实输出0,每个结果之间应换行。

样例输入

abcde a3
aaaaaa aa
#

样例输出

0
3

题解

最近学习了 KMP 字符串算法,心血来潮写一篇博客……
虽说 exKMP 要比 KMP 难一些,但是由于给我讲算法的师姐只给我讲了 exKMP ,所以我只会 exKMP (因为老师还没有正式讲 QwQ ),貌似 KMP 可以解决的问题 exKMP 都能解决,而 exKMP 能解决的问题 KMP 不一定能解决 QwQ ,所以我就贴 exKMP 的算法啦~


好了,那么什么是 exKMP 呢?
exKMP 问题就是求出模式串 A 与被匹配字符串B的每一个后缀的最长公共前缀。
例如 A=aab B=aabaaab

B 的后缀起始下标 B的后缀 A 的最长公共前缀长度
0 aabaaab 3
1 abaaab 1
2 baaab 0
3 aaab 2
4 aab 3
5 ab 1
6 b 0

exKMP 看似需要 O(n2) 的时间,但是和 KMP 问题一样, exKMP 问题也可以在 O(n) 的时间内做出来。我们定义两个数组:
nex A 的所有后缀与A的最长公共前缀
ex B 的所有后缀与A的最长公共前缀
我们先看看怎么求出辅助数组 nex
显然, nex[0]=lena nex[1] 可以 O(n) 暴力求出
然后我们考虑在知道了 nex[1...i1] 后求出 nex[i]


nex 的定义得, nex[j] 表示从第 j 位开始,有连续的nex[j]位与字符串的开头相同,定义 p=j+nex[j] 。容易发现 [j,p) 与开头的 [0,nex[j]) 匹配。
我们在 [1,i) 中找到一个 p 最大的j,如果 i 的最长公共前缀全都被[j,p)覆盖,那么由于 nex 的定义,很容易发现 nex[i] 就是 nex[ij] 。因为 j<i ,所以我们只需要判断 i 的右端点是否被完全覆盖即可,也就是i+nex[ij]是否被覆盖。

所以就分成了两种情况:

  • 如果 i+nex[ij]<maxp ,那么 nex[i]=nex[ij]
  • 如果 i+nex[ij]>=maxp 呢?很遗憾,你只能从 maxp 开始暴力做(当然别忘了更新 j maxp)……但是不要沮丧,每一个位置只会被暴力做一次(做完后就被 maxp 覆盖了),所以时间依然是 O(n) !

至此,我们求出了 nex 数组,那怎么求 ex 数组呢?我们可以用类似的步骤重做一次,只需要注意几个细节就基本算是 copy 了……
附上求 nex 代码片

nex[0]=n;//特殊情况
for(int i=1;i<n;i++)
    if(A[i]==A[i-1])nex[1]++;
        else break;//暴力
maxp=nex[1]+1;po=1;//不说话
for(int i=2;i<n;i++)
{
    if(i+nex[i-po]<maxp)nex[i]=nex[i-po];//第一种情况
    else nex[i]=max(maxp-i,0);
    while(i+nex[i]<n&&A[nex[i]]==A[i+nex[i]])nex[i]++;//第二种情况开始暴力……
    if(i+nex[i]>maxp)maxp=i+nex[i],po=i;
}

好了我们回到原题,通过 exKMP ,我们能够求出 ex 数组,如果 ex[i]=n 说明 i 号位置的后缀可以与模式串匹配,那么就可以剪下[i,i+n),那么我们就可以把题目转化成另一个问题。已知 k 个区间,选出最多的两两不相交的区间。这就是一个简单的贪心了,由于长度都相等,我们只需要尽量选靠前的区间,如果有重叠,就把靠后的区间舍掉。O(n)扫过去就好了,然后就是代码了(这次有注释了!!!虽然只有一个)……

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000005
char A[N],B[N];//A为模式串 B为匹配串
int nex[N],ex[N],maxp,po,n,m;
void exKMP(char *A,char *B)
{
    memset(nex,0,sizeof(nex));
    memset(ex,0,sizeof(ex));
    n=strlen(A);m=strlen(B);
    nex[0]=n;
    for(int i=1;i<n;i++)
        if(A[i]==A[i-1])nex[1]++;
        else break;
    maxp=nex[1]+1;po=1;
    for(int i=2;i<n;i++)
    {
        if(i+nex[i-po]<maxp)nex[i]=nex[i-po];
        else nex[i]=max(maxp-i,0);
        while(i+nex[i]<n&&A[nex[i]]==A[i+nex[i]])nex[i]++;
        if(i+nex[i]>maxp)maxp=i+nex[i],po=i;
    }
    for(int i=0;i<n;i++)
        if(A[i]==B[i])ex[0]++;
        else break;
    maxp=ex[0];po=0;
    for(int i=1;i<m;i++)
    {
        if(i+nex[i-po]<maxp)ex[i]=nex[i-po];
        else ex[i]=max(maxp-i,0);
        while(ex[i]<n&&i+ex[i]<m&&A[ex[i]]==B[i+ex[i]])ex[i]++;
        if(i+ex[i]>maxp)maxp=i+ex[i],po=i;
    }
}
int main()
{
    for(;;)
    {
        scanf("%s",B);
        if(B[0]=='#')
            break;
        scanf("%s",A);
        exKMP(A,B);
        int last=0,sum=0;
        for(int i=0;i<m;i++)
            if(ex[i]==n&&i>=last)
                sum++,last=i+n;
        printf("%d\n",sum);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值