「雅礼集训 2017 Day2」水箱 并查集+树形DP

前言

好久没有写博客了,写一道雅礼毒瘤题来开开刀……CSDN都转变编辑器风格了,那我也顺便转换一下写作风格啦~

题目链接

水箱-LOJ

题目描述(改编)

有一个毒瘤,长得和水箱一样,可以装很多毒液。高度可以看做是正无穷,宽度为 1 ,长度为n

这个毒瘤里面有 n1 个挡板,把毒瘤分成了 n 个小格。格子里已添加了一些毒液,毒液如果超过挡板就会溢出到其他格子里(就是说不会出现悬空毒液)(这很科学有没有)

现在告诉你每个挡板的高度和 m 个条件。每个条件形式如 (i,y,k) ,表示从左到右数的第 i 个格子中,在高度为 y+0.5 的地方是否有毒液, k=1 表示有, k=0 表示没有水,请求出这 m 个条件最多能同时满足多少个条件。本题有多组数据。

输入格式

第一行一个正整数 T,为数据组数。
第二行两个正整数 n m,中间用空格隔开。
接下来一行 n1 个整数,表示从左到右每一块挡板的高度。
接下来 m 行,每行三个整数 i y k,表示一个条件。

输出格式

T 行,每行对应一组数据的答案。

样例输入

2
3 4
3 4
1 3 1
2 1 0
2 2 0
3 3 1
2 2
2
1 2 0
1 2 1

样例输出

3
1

数据范围与提示

对于 20% 的数据, n,m16
对于另外 10% 的数据,只存在指明某处有水的条件;
对于另外 30% 的数据, n,m1000
对于 100% 的数据, n,m105,T5

题解

我只能说毒瘤出题人脑子里的毒瘤已经无法阻挡了。

PS: 为了讨论方便,以下内容中水箱即为毒瘤,水即为毒液

这道题其实思路特别巧妙……我们根据挡板的高度构造一棵树。这棵树有点类似于线段树,又有点类似于哈弗曼树(蒟蒻的理解,大犇勿喷)。我们以挡板从低到高的顺序开始,将挡板两端合并为一个节点,原来的两个节点变成儿子。描述不清楚,还是画图清楚一点……

树状图

我们可以使用并查集合并区间并建树,那么每一个节点其实就都代表了一个区间,而且还是一颗二叉树。你问我这样建树的作用?当然是树形 DP 啦!

对于一个区间,只可能有两种情况:1).没有溢出 2).溢出去了,我们分别讨论这两种情况

我们令 F[i] 表示编号为 i 的区间的水溢出去了最多可以满足多少条件,D[i] 表示编号为 i 的区间的水没有溢出了最多可以满足多少条件。注意,我们这里讨论的条件,只限于在这个区间中且高度在 i 的「管辖范围」内的条件。

「管辖范围」的意思是,这些条件完全不涉及到这个区间外的格子(比如上图中紫色区间中不讨论红色区间的条件(这个跟紫色区间没有关系啊喂),也不讨论深蓝色区间的水超过紫色区间范围的条件(比如溢出紫色区间左侧的挡板的情况,因为这样就要讨论黄色区间或者更多))。

换句话说,我们将溢出范围的条件归给父亲,如果连父亲都溢出来就归给祖父,以此类推,直到不会溢出为止(当然,最多是整个 [1,n] 区间啦)

那么我们只讨论在「管辖范围」内的情况。

首先,我们先看 D 数组,要求不溢出的条件数量,那么就分两种情况。
1.两个儿子都没有溢出,这样就相安无事,那么很显然的Di=ΣDsoni+empi empi 表示属于 i 管辖的条件中k=0 的条件总数。
2.所有儿子都溢出了,但是都没有溢过 i 的上界,这个就要复杂一些,首先很显然的 Di 至少等于 Di=ΣFsoni ,现在考虑 i 管辖的条件。我们可以枚举一下现在溢出的高度,小于等于这个高度的 k=1 的条件都要加上,大于这个高度的 k=0 的条件都要加上。那么我们设置一个 sum=empi ,然后按条件低到高枚举,遇到一个新的高度就加上 k=1 的个数,减去 k=0 的个数,然后所有的 sum 取一个最大值即可。

然后就是 F 数组了,这就很简单了,只需要 ΣFi=Fsoni+allempi 就可以了, all 是管辖的条件总数, allempi 就是 k=1 的个数。直观上理解就是儿子全都溢出,然后自己也全都溢满。

然后最终答案就是 Dfull ,就是整个区间的 D

至此就完成了,但其实有很多细节,就不一一赘述了……

Code:

#include<vector>
#include<cstdio>
#include<cstring>
#include<climits>
#include<algorithm>
using namespace std;
#define N 200005
int T,n,m,dt,bel[N],tip[N],bot[N],emp[N];
int fa[20][N],son[N][2],f[N],d[N];
pair<int,int>h[N];
vector<pair<int,bool> >g[N];
template<class type>
inline void Read(type &a)
{
    a=0;bool f=0;char c;
    while(c=getchar(),c<'0'||c>'9')f|=(c=='-');
    while(c>='0'&&c<='9')a=a*10+c-'0',c=getchar();
    if(f)a=-a;
}
template<class type>
inline void Write(type a)
{
    if(a<0)putchar('-'),a=-a;
    if(a>9)Write(a/10);
    putchar(a%10+'0');
}
template<class type>inline type Ckmax(type &a,const type b){return a=max(a,b);}
template<class type>inline type Ckmin(type &a,const type b){return a=min(a,b);}
int Getbel(int a)
{
    if(!bel[a])return a;
    return bel[a]=Getbel(bel[a]);
}
void Init()
{
    Read(n);Read(m);
    for(int i=1;i<n;i++)
    {
        Read(h[i].first);
        h[i].second=i;
    }
    bot[0]=INT_MAX;
    sort(h+1,h+n);dt=n;
    memset(bel,0,sizeof(bel));
    for(int i=1;i<=n;i++)
        fa[0][i]=bot[i]=son[i][0]=son[i][1],tip[i]=i;
    for(int i=1;i<n;i++)
    {
        int a=Getbel(h[i].second);
        int b=Getbel(h[i].second+1);
        bot[++dt]=h[i].first;
        fa[0][dt]=0;
        fa[0][tip[a]]=dt;
        fa[0][tip[b]]=dt;
        son[dt][0]=tip[a];
        son[dt][1]=tip[b];
        bel[b]=a;
        tip[a]=dt;
    }
    for(int i=1;i<=dt;i++)g[i].clear();
    for(int i=1;i<=18;i++)
        for(int j=1;j<=dt;j++)
            fa[i][j]=fa[i-1][fa[i-1][j]];
}
void Insert()
{
    int x,hei,type;
    memset(emp,0,sizeof(emp));
    for(int i=1;i<=m;i++)
    {
        Read(x);Read(hei);Read(type);
        for(int j=18;j>=0;j--)
            if(bot[fa[j][x]]<=hei)
                x=fa[j][x];
        g[x].push_back(make_pair(hei,type));
        emp[x]+=!type;
    }
    for(int i=1;i<=dt;i++)
        sort(g[i].begin(),g[i].end());
}
void Solve()
{
    memset(f,0,sizeof(f));
    memset(d,0,sizeof(d));
    int S,T,sum,sz,tmp;
    for(int i=1;i<=dt;i++)
    {
        if(!g[i].empty())
        {
            sz=g[i].size();
            S=0;
            d[i]=sum=emp[i]+(i>n?f[son[i][0]]+f[son[i][1]]:0);
            while(S<sz)
            {
                T=S;
                tmp=(g[i][T].second?1:-1);
                while(T+1<sz&&g[i][T+1].first==g[i][T].first)
                    ++T,tmp+=(g[i][T].second?1:-1);
                sum+=tmp;
                Ckmax(d[i],sum);
                S=T+1;
            }
            f[i]=sum;
        }
        if(i>n)
        {
            Ckmax(d[i],emp[i]+d[son[i][0]]+d[son[i][1]]);
            Ckmax(f[i],f[son[i][0]]+f[son[i][1]]);
        }
    }
    Write(d[dt]);
    putchar(10);
}
int main()
{
    Read(T);
    while(T--)
    {
        Init();
        Insert();
        Solve();
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值