自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

梦坠凡尘

一步一步,爬坑之路

  • 博客(125)
  • 资源 (5)

原创 模型剪枝学习笔记 --- EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
原力计划

论文:https://arxiv.org/abs/2007.02491代码:https://github.com/anonymous47823493/EagleEye这篇论文一定要好好研究下,提出该剪枝方法的是暗物智能科技&中山大学,当初去面试过该公司,聊了将近一小时,大部分是关于剪枝的内容。。。。。。。可惜自己真实菜如狗。。。。。...

2020-07-12 15:09:18 898 7

原创 [目标检测新范式]DETR --- End-to-End Object Detection with Transformers
原力计划

论文:https://arxiv.org/abs/2005.12872代码:https://github.com/facebookresearch/detr参考https://blog.csdn.net/longxinchen_ml/article/details/86533005

2020-05-29 12:22:00 7678 1

原创 YOLOv4的Tricks解读一 --- 多图融合的数据增强(MixUp/CutMix/Mosaic)
原力计划

目录数据增强MixUpCutMix==Mosaic==正则化DropOut==DropBlock==YOLOv4中红涉及到了一推的trick,可以说是目标检测的trick字典,而YOLOv4是精挑细选了一些Trick才使YOLOv4在速度和准确度上相比YOLOv3有了更大的提升。本文就YOLOv4中涉及和采用的部分tricks进行总结和学习。(注:标题标红的trick为YOLOv4所采用)YOLOv4 = CSPDarknet53 + SPP + PAN + YOLOv3而YOLOv4采用的tric

2020-05-19 23:18:27 3306

原创 YOLOv4实战尝鲜 --- 教你从零开始训练自己的数据集(安全头盔佩戴识别检测)
原力计划

本文代码基于:https://github.com/ultralytics/yolov3首先介绍数据集,来源于AI研习设的一个比赛,见链接:https://god.yanxishe.com/32

2020-05-13 21:49:43 8682 129

转载 PyTorch Cookbook --- 常用代码段整理合集

本文代码基于PyTorch 1.0版本,需要用到以下包import collectionsimport osimport shutilimport tqdmimport numpy as npimport PIL.Imageimport torchimport torchvision1. 基础配置检查PyTorch版本torch.__version__ ...

2020-05-08 13:45:30 140

原创 Pandas下dataframe根据条件删除行

df = df.drop(df[(df['pred_id']==7) | (df['pred_id']==6)].index) #删除正常的行df['img'] = df['img'].apply(lambda x: 'kg_live_100w/' + x.split('/')[-1]) # 只保留图片名字

2020-10-13 09:56:24 25

原创 A dataframe过滤掉B dataframe中的所有数据

import pandas as pdimport oslive_img_expand = pd.read_csv('img_expand.csv')live_img_test = pd.read_csv('test_list.csv')print(live_img_test.shape)print(live_img_expand.shape)live_img_expand_train=live_img_expand[~live_img_expand['filename'].isin(live

2020-09-21 15:05:45 34

原创 解决 OSError: cannot identify image file 或者 Caught TypeError in DataLoader worker process 8

跑模型在读取数据是出错如题,找了两个多小时干到深夜依然不能解!!!本地把数据过了一遍都是OK的,代码也是一样!!!一模一样的代码一模一样的数据为何本地OK,服务器就挂了????最后网上给百度说是可能是Pillow版本的原因本地是Pillow == 5.2.0服务器是5.1.0最后将服务器升级为 Pillow5.2.0==真的解决了!!!!!!!!!谜之答案!!!!!浪费晚上两个多小时。心痛!谨记!...

2020-09-18 09:38:02 159

原创 IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)

报错代码criterion = nn.CrossEntropyLoss().to(device)loss = criterion(output, target)网上很多说criterion的第一个输入问题,我的解决是改变batchsize 大小即可

2020-09-03 14:11:42 205

原创 解决ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.22‘ not found

问题:from sklearn.metrics import classification_report,accuracy_score报错:ImportError: /usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.22’ not found (required by /data2/deliancen/anaconda/lib/python3.6/site-packages/scipy/fft/_pocketfft/pypoc

2020-08-31 10:27:35 219

原创 加载预训练权重的部分参数

pretrained_dict = ...model_dict = model.state_dict()# pretrained_dict: ['A', 'B', 'C', 'D']# model_dict: ['A', 'B', 'C', 'E']# 1. filter out unnecessary keyspretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}# pretrain

2020-08-24 21:03:07 97

原创 Linux下常用命令(持续更新)

将一个文件夹下的所有内容复制到另一个文件夹下cp -r /home/packageA/* /home/cp/packageB/或cp -r /home/packageA/. /home/cp/packageB/拷贝一个文件到另一个地方cp -r /home/packageA/* /home/cp/packageB/

2020-08-21 12:00:47 67

原创 ReXNet学习笔记 --- ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network

论文:https://arxiv.org/pdf/2007.00992.pdf代码:https://github.com/clovaai/rexnet挺久没有看新论文了,,只有学习才能让我快乐!!摘要本文解决了网络中的representational bottleneck,并提出了一组可显著提高模型性能的设计原则。作者认为,representational bottleneck可能会出现在由常规设计设计的网络中,并导致模型性能下降。为了研究representational bottleneck,作者

2020-07-23 12:14:00 186

原创 上传本地代码到github常用command

手生了~~~~记录下创建一个新的new repositorygit initgit add xxxx(这里是你要上传的文件)git status(查看状态)git diff(查看变更)git commit -m 'xxx'(本次update的说明)git remote add origin xxx(你的git地址)git push -u origin master(上传到主分支)Push现有的gitgit remote add origin xxx(你的git地址)git push

2020-07-08 22:53:24 107

原创 Ubuntu16.04下成功安装C++版本的Opencv4.3

目录环境准备下载Opencv4.3安装配置环境验证安装环境准备安装cmakesudo apt-get install cmake安装依赖环境sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libswscale-dev libtiff5-devsudo apt-get install libgtk2.0-devsudo apt-get install pk

2020-07-06 17:59:29 735 5

原创 新优化器SGDP+AdamP:减慢基于动量的优化器的权重增长

论文:https://arxiv.org/pdf/2006.08217.pdf代码:https://github.com/clovaai/AdamP摘要诸如batch normalization(BN)等正则化技术已导致深度神经网络性能的显著改善。先前的研究已经分析了梯度下降(GD)优化器所产生的权重尺度不变的好处:由于步长的自动调整,它导致了稳定的训练。但是,我们表明,结合基于动量的算法,尺度不变性往往会导致权重规范的过度增长。这反过来又过度抑制了训练过程中的有效步长,可能会导致深度神经网络中的次优

2020-06-23 14:15:43 250

原创 Ubuntu16.04下Cuda10.2的Tensorrt7.0安装及填坑指南

先下载tensorrt安装包,链接如下:https://developer.nvidia.com/nvidia-tensorrt-7x-download

2020-06-21 21:49:08 928

原创 重新安装显卡驱动440和cuda10.2版本

最近跑Yolov5,需要Pytorch1.5环境,Pytorch1.5依赖cuda10.2,cuda10.2依赖显卡驱动440。。。而我电脑的配置是显卡驱动418(最高只支持cuda10.1),cuda10.1,cuda10.0,cuda9.0(我安装了多个cuda版本,现在用的是cuda10.0)。所以需要重新安装显卡和cuda。安装显卡440按照https://blog.csdn.net/xunan003/article/details/81665835可以成功安装显卡驱动版本440.

2020-06-16 22:55:58 1657 3

原创 卷积核计算个数和BN层gamma系数个数关系

关于卷积核计算的可视化,是一个卷积核对应一个输出通道。这里直接用cs231n课程中的一张卷积动图展示如下:

2020-06-16 11:13:29 481

原创 Python中的常用方法/经典函数(持续更新)

统计list中的元素出现的个数字典get()函数l = ['apple','red','1','apple','1','red','2','apple']dict1 = dict()for i in l: dict1[i] = dict1.get(i, 0) + 1 print(dict1)>>{'apple': 3, 'red': 2, '1': 2, '2': 1}Counter 方法l = ['apple','red','1','apple','1',

2020-06-10 17:29:46 142

原创 AC-FPN解读 --- Attention-guided Context Feature Pyramid Network for Object Detection
原力计划

论文:https://arxiv.org/pdf/2005.11475.pdf代码:https://github.com/Caojunxu/AC-FPN摘要对于目标检测,如何解决高分辨率输入上的特征图分辨率与感受野之间的矛盾要求仍然是一个悬而未决的问题。在本文中,为了解决这个问题,我们建立了一种新颖的体系结构,称为注意力导向的上下文特征金字塔网络(AC-FPN),该体系结构通过集成注意力导向的多路径功能来利用来自各个大型感受野的判别信息。该模型包含两个模块。第一个是上下文提取模块(CEM),它从多个接

2020-06-10 16:10:08 1019

原创 使用Python验证字符串是否是回文串

给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。说明:本题中,我们将空字符串定义为有效的回文串。示例 1:输入: “A man, a plan, a canal: Panama”输出: true示例 2:输入: “race a car”输出: false来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/valid-palindrome著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。使

2020-06-09 10:39:32 126

原创 Python计算斐波纳契数列(f(n)=f(n-1)+f(n-2))

题目:已知:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) 其中(n≥2,n∈N*)def Fun(x): if x <=1: return

2020-06-05 14:23:16 924

原创 目标检测中NMS和mAP指标中的的IoU阈值和置信度阈值

有时候路走的太远,会忘了为什么要出发。学习亦如是在目标检测中,经常看到置信度阈值和IoU阈值这两个关键参数,且NMS计算和mAP计算中都会有这两个,那它们的区别是什么?本文就这个问题做一次总结。NMS模型预测会输出很多框,比如同一个目标会有很多框对应,NMS的作用是删除重复框,保留置信度分数最大的框。mAP...

2020-06-03 11:42:44 1742 3

原创 RetinaFace-Pytorch源码阅读

论文:https://arxiv.org/pdf/1905.00641.pdf代码:https://github.com/deepinsight/insightface/tree/master/RetinaFacePytorch复现:https://github.com/biubug6/Pytorch_RetinafacePytorch真香~本文解读代码基于Pytorch复现版。关于RetinaFace理论知识请参考:RetinaFace论文解读先回顾RetinaFace的结构,如下:以上,Re

2020-05-27 14:12:13 839 3

原创 RetinaFace论文解读 --- RetinaFace: Single-stage Dense Face Localisation in the Wild
原力计划

论文:https://arxiv.org/pdf/1905.00641.pdf代码:https://github.com/deepinsight/insightface/tree/master/RetinaFacePytorch复现:https://github.com/biubug6/Pytorch_RetinafaceRetinaFace于19年5月份出现,当时取得了state-of-the-art,可以说是目前开源的最强人脸检测算法,先看效果:...

2020-05-26 16:45:47 976

原创 YOLOv4的Tricks解读三--- 目标检测后处理(Soft-NMS/DIoU-NMS)
原力计划

目录Soft-NMSDIoU-NMSYOLOv4 = CSPDarknet53 + SPP + PAN + YOLOv3YOLOv4采用的trick可以分为以下几类:用于骨干网的 Bag of Freebies(BoF):CutMix和Mosaic数据增强,DropBlock正则化,Label Smooth用于骨干网的 Bag of Specials(BoS):Mish,跨阶段部分连接(CSP),多输入加权剩余连接(MiWRC)用于检测器的 Bag of Specials(BoS):Mish,S

2020-05-22 19:36:08 1864

原创 YOLOv4的Tricks解读二 --- 正则化(DropOut/DropConnect/DropBlock)
原力计划

目录DropOutDropBlockYOLOv4 = CSPDarknet53 + SPP + PAN + YOLOv3YOLOv4采用的trick可以分为以下几类:用于骨干网的 Bag of Freebies(BoF):CutMix和Mosaic数据增强,DropBlock正则化,Label Smooth用于骨干网的 Bag of Specials(BoS):Mish,跨阶段部分连接(CSP),多输入加权剩余连接(MiWRC)用于检测器的 Bag of Specials(BoS):Mish,S

2020-05-20 23:27:31 950

原创 目标检测中的回归损失函数系列四:DIoU Loss / CIoU Loss

论文:https://arxiv.org/pdf/1911.08287.pdfYOLOv-DIoU开源代码:https://github.com/Zzh-tju/DIoU-darknet

2020-05-12 14:25:01 938

原创 目标检测中的回归损失函数系列三:GIoU Loss

出自论文:添加链接描述代码:https://github.com/generalized-iou/g-darknet目标检测中的回归损失函数系列二:IoU Loss已经讲过IoU Loss,GIoU是对IoU的改进,我们再看一次下面这张图:IoU Loss = 1-IoU,其中IoU可以由下计算得到:A,B是预测框和真实框,对应上图中的绿色框和黑色框。综上可以看出两个问题:预测框bbox和ground truth bbox如果没有重叠,IOU就始终为0并且无法优化。也就是说损失函数失去了可

2020-05-11 18:02:25 903

原创 目标检测中的回归损失函数系列二:IoU Loss

IOU Loss出自论文:https://arxiv.org/pdf/1608.01471.pdfL1 和L2 loss是将bbox四个点分别求loss然后相加,并没有考虑靠坐标之间的相关性,而实际评价指标IOU是具备相关性。看一张图关注IoU部分(GIoU先不管):图中第一行,所有目标的L1 Loss都一样,但是第三个的IoU显然是要大于第一个,并且第3个的检测结果似乎也是好于第一个的。第二行类似,所有目标的L1 Loss也都一样,但IoU却存在差异。因此使用bbox和ground truth

2020-05-11 14:41:34 2196

原创 目标检测中的回归损失函数系列一:Smooth L1 Loss

SmoothL1 Loss采用该Loss的模型(Faster RCNN,SSD,,)SmoothL1 Loss是在Faster RCNN论文中提出来的,依据论文的解释,是因为smooth L1 loss让loss对于离群点更加鲁棒,即:相比于L2 Loss,其对离群点、异常值(outlier)不敏感,梯度变化相对更小,训练时不容易跑飞。假设x是预测框与 groud truth 之间 elementwise 的差异,那么对比L1/L2/SmoothL1 Loss如下:对应的曲线图如下:对三个lo

2020-05-11 14:10:07 413

原创 Pytorch中的CrossEntropyLoss()函数案例解读和结合one-hot编码计算Loss
原力计划

使用Pytorch框架进行深度学习任务,特别是分类任务时,经常会用到如下:import torch.nn as nncriterion = nn.CrossEntropyLoss().cuda()loss = criterion(output, target)即使用torch.nn.CrossEntropyLoss()作为损失函数。那nn.CrossEntropyLoss()内部到底是啥??nn.CrossEntropyLoss()是torch.nn中包装好的一个类,对应torch.nn.fu

2020-05-09 15:07:20 2441 7

原创 Yolact学习笔记 --- 《YOLACT Real-time Instance Segmentation》
原力计划

论文:https://arxiv.org/abs/1904.02689代码:https://github.com/dbolya/yolactYolact是2019年出的第一个达到实时的开创性实例分割网络,年底也更新到了Yolact++。去年只是用它跑了自己的数据,但一直没有深入学习这个模型,这次好好学习下。...

2020-05-07 15:08:38 152

原创 Stitcher学习笔记:提升小目标检测 --- 简单而有效

论文:https://arxiv.org/abs/2004.12432代码:即将开源(开源后回来更新)大多数目标检测算法在小目标检测上都有显著的性能下降,作者通过统计分析发现,这与训练阶段小目标对损失函数的贡献小有关系,Feedback-driven Data Provider 顾名思义,作者提出了一种基于训练时反馈然后提供数据的方式改进训练,而制作新数据的方式也很简单,就是把图像拼接起来 S...

2020-05-06 15:03:56 841 5

原创 YOLOv4总结 --- 思维导图

论文:https://arxiv.org/pdf/2004.10934.pdf代码:https://github.com/AlexeyAB/darknet该图来自公众号【计算机视觉联盟】

2020-04-30 10:35:24 825

原创 Python 提取COCO数据集的指定类并保存标签为XML格式

有时候我们会抽取一些公开数据集的某些类别数据作为自己补充训练数据。抽取VOC2012数据集指定类别之前讲到过,参考:Yolov3 行人检测 – 使用Yolov3训练从VOC2012抽取出来的行人数据本文是抽取COCO数据集的指定类别并将标签转为XML格式。...

2020-04-29 14:11:15 416 1

原创 解决ImportError: cannot import name '_validate_lengths'

只需升级一下scikit-image库pip install -U scikit-image错误解除!

2020-04-27 23:15:28 224

原创 Git常用命令速查表

2020-04-27 13:31:00 78

原创 YOLOv4真的来了!!论文翻译 --- YOLOv4: Optimal Speed and Accuracy of Object Detection
原力计划

代码:https://github.com/AlexeyAB/darknet论文:https://arxiv.org/abs/2004.10934新鲜出炉的YOLOV4,集大成者。先看看效果对比:由图可以看到,YOLOV4在准确度和效率上都有大幅提升,与Efficientdet相比,在相同的准确率下速度快两倍,相比YOLOv3 AP和速度有10%和12%的提升。...

2020-04-26 21:10:27 1432

郭天祥单片机学习课件

郭天祥《十天学会单片机》前面七课的课件,课件包含ppt,详细解读各个项目的开发,适合初学者

2012-10-22

单片机初学者十个项目

里面包含了适合单片机初学者掌握的几个项目,项目包裹程序,ppt,仿真,很适合初学者

2012-10-22

API函数包下载

api函数包,用于c或c++的开发,是必备的

2012-10-21

c语言谭浩强版

谭浩强c语言第三版,很好,适合于初学者,讲的通熟易懂,易于理解,是一本好书

2012-07-31

Python/Matlab 小波包变换实例源码

1、用自己采样得到的故障诊断数据分别采用Python/MATLAB两种方式对样本数据进行故障特征提取。 2、附有数据文件夹,里面包含有9种不同的故障样本集原始数据,每一种故障样本集共有100组样本。文件夹共有900组样本数据。 3、两份用Python或MATLAB写的源码都是对故障样本进行特征提取并归一化操作,改变文件路径可以直接运行。

2018-12-11

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除