论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision DINOv2: Learning Robust Visual Features without Supervision论文阅读笔记
论文泛读: Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement泛读笔记
论文泛读: DETRs Beat YOLOs on Real-time Object Detection DETRs Beat YOLOs on Real-time Object Detection论文泛读笔记
论文泛读: TransNeXt: Robust Foveal Visual Perception for Vision Transformers TransNeXt: Robust Foveal Visual Perception for Vision Transformers论文泛读笔记
论文阅读笔记:RepViT: Revisiting Mobile CNN From Vit Perspective CVPR2024论文《RepViT: Revisiting Mobile CNN From Vit Perspective》阅读笔记
模型微调方法 LoRA假设微调期间的权重更新可以很好地近似于低秩矩阵。LoRA不会更新全权重矩阵W\mathbf{W}W, 而是将更新分解为两个较小的矩阵A\mathbf{A}A和B\mathbf{B}B具体的训练过程是: 将原来的矩阵参数固定,然后利用新的数据继续训练大模型,训练过程只更新A\mathbf{A}A和B\mathbf{B}B矩阵。在推理时,将原来的矩阵W\mathbf{W}W和(A×B)(\mathbf{A}\times\mathbf{B})(A×B)相加。权重分解低秩适用(DORA)将预训练的权重分
论文笔记: Stronger, FeweHarnessing Vision Foundation Models for Domain Generalized Semantic Segmentation Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation论文笔记
如何通俗理解逻辑回归(Logistic Regression) 首先, 什么是逻辑回归呢? 我们先来看一下逻辑回归的公式:t=wTX+by=sigmoid(t)sigmoid(t)=11+e−tt = w^TX+b\\y = sigmoid(t)\\sigmoid(t) = \frac1{1+e^{-t}}t=wTX+by=sigmoid(t)sigmoid(t)=1+e−t1对于上面的公式, 感觉很眼熟有木有!!! 没错, 就是线性回归的公式, 线性回归请参考https://xiaoxiablogs.top/index.php/机器学习/linear-r
PaddleOCR使用详解 文章目录PaddleOCR简介环境配置PaddleOCR2.0的配置环境Docker数据集文本检测使用自己的数据集文本识别使用自己的数据集字典自定义字典添加空格类别文本角度分类文本检测训练模型准备启动训练断点训练指标评估测试检测效果文本识别启动训练评估预测文本角度分类训练启动训练数据增强训练评估预测配置文件说明GlobalOptimizer ([ppocr/optimizer](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/ppocr/
机器学习知识总结——模型评估标准之混淆矩阵 模型评估标准混淆矩阵预测值=1预测值=0真实值=1TPFN真实值=0FPTNTP=True Postive=真阳性;FP=False Positive=假阳性TN = True Negative=假阴性;FN=False Negative=假阴性什么是查准率/精确率Precision=TPTP+FPPrecision=\frac{TP}{TP+FP}Precision=TP+FPTP什么是查全率/召回率Recall=TPTP+FNRecall
机器学习知识总结——过拟合和欠拟合 过拟合(overfitting)什么是过拟合?所谓过拟合就是指在验证集和训练集上表现很好,但是在测试集上表现很差,也就是说泛化能力差。一般表现为: 高方差,低偏差过拟合的原因训练样本选取有误、样本标签错误等样本噪声干扰过大模型过于复杂对于神经网络来说:学习迭代次数太多如何防止/解决过拟合问题?扩大数据集进行正则化(L1正则或者L2正则等)采用合适的模型(控制模型的复杂度)Early stopping(通过迭代次数截断的方法来防止过拟合)Dropout(在神经网络中可以
逻辑回归(Logistic Regression)详解 文章目录什么是逻辑回归?逻辑回归的原理最常用的训练模型方法——梯度下降法逻辑回归的损失函数总结什么是逻辑回归?首先,什么是逻辑回归呢?当你看到这个名字的时候,你可能会被他误导,认为他是做回归的,实际上,他是一个分类模型。只不过他是在线性回归的基础上进行了扩展,使其可以进行分类了而已。同样的,逻辑回归的与线性回归一样,也是以线性函数为基础的;而与线性回归不同的是,逻辑回归在线性函数的基础上添加了一个非线性函数,如sigmoid函数,使其可以进行分类。逻辑回归的原理关于逻辑回归的原理呢,大家可以参照