Python3机器学习
文章平均质量分 89
欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning
知乎专栏:https://zhuanlan.zhihu.com/ml-jack
Jack-Cui
微信公众号搜索【JackCui-AI】,关注这个爱发技术干货的程序员。个人网站:https://cuijiahua.com
展开
-
全网最通俗易懂的聚类算法!嘿,来聚个类!
简单易懂,图解聚类算法原创 2021-04-26 08:26:27 · 12901 阅读 · 43 评论 -
Python3《机器学习实战》学习笔记(十二):线性回归提高篇之乐高玩具套件二手价预测
转自个人网站:http://cuijiahua.com/blog/2017/12/ml_12_regression_2.html一、前言本篇文章讲解线性回归的缩减方法,岭回归以及逐步线性回归,同时熟悉sklearn的岭回归使用方法,对乐高玩具套件的二手价格做出预测。二、岭回归如果数据的特征比样本点还多应该怎么办?很显然,此时我们不能再使用上文的方法进行计算了,因为矩阵X不是满秩矩阵...原创 2018-10-08 14:44:17 · 13942 阅读 · 19 评论 -
Python3《机器学习实战》学习笔记(十一):线性回归基础篇之预测鲍鱼年龄
前面的文章介绍了很多分类算法,分类的目标变量是标称型数据,而本文将会对连续型的数据做出预测。主要讲解简单的线性回归和局部加权线性回归,并通过预测鲍鱼年龄的实例进行实战演练。原创 2017-12-09 17:01:15 · 31893 阅读 · 14 评论 -
Python3《机器学习实战》学习笔记(十):提升分类器性能利器-AdaBoost
前面的文章已经介绍了五种不同的分类器,它们各有优缺点。我们可以很自然地将不同的分类器组合起来,而这种组合结果则被成为集成方法(ensemble method)或者元算法(meta-algorithm)。使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一种算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类器之后的集成。原创 2017-10-12 10:45:26 · 25594 阅读 · 17 评论 -
Python3《机器学习实战》学习笔记(九):支持向量机实战篇之再撕非线性SVM
上篇文章讲解的是线性SVM的推导过程以及简化版SMO算法的代码实现。本篇文章将讲解SMO算法的优化方法以及非线性SVM。原创 2017-10-04 15:48:31 · 29867 阅读 · 45 评论 -
Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM
说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。原创 2017-09-23 17:50:18 · 86077 阅读 · 154 评论 -
Python3《机器学习实战》学习笔记(七):Logistic回归实战篇之预测病马死亡率
本文对梯度上升算法和改进的随机梯度上升算法进行了对比,总结了各自的优缺点,并对sklearn.linear_model.LogisticRegression进行了详细介绍。原创 2017-09-05 15:22:49 · 32398 阅读 · 35 评论 -
Python3《机器学习实战》学习笔记(六):Logistic回归基础篇之梯度上升算法
本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。原创 2017-08-30 20:18:55 · 47873 阅读 · 75 评论 -
Python3《机器学习实战》学习笔记(五):朴素贝叶斯实战篇之新浪新闻分类
上篇文章讲解了朴素贝叶斯的基础知识。本篇文章将在此基础上进行扩展,你将看到一下内容:拉普拉斯平滑、垃圾邮件过滤、新浪新闻分类原创 2017-08-23 10:16:04 · 41039 阅读 · 80 评论 -
Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器
朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。原创 2017-08-17 20:57:59 · 45115 阅读 · 73 评论 -
Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜
上篇文章讲述了机器学习决策树的原理,以及如何选择最优特征作为分类特征。本篇文章将在此基础上进行介绍。主要内容包括:决策树构建、决策树可视化、使用决策树进行分类预测、决策树的存储和读取、sklearn实战之预测隐形眼镜类型原创 2017-07-28 15:30:33 · 68802 阅读 · 80 评论 -
Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起
有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理和决策树的构建,完整实例内容会在下一篇进行讲解。原创 2017-07-21 16:44:27 · 79959 阅读 · 63 评论 -
Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)
本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。原创 2017-07-15 16:04:39 · 182223 阅读 · 202 评论