从业务开发视角看分布式系统一致性

本文从业务开发角度探讨分布式系统一致性,介绍了CAP理论、集群/分布式/微服务的区别,以及保证一致性的各种算法,如2PC、Paxos、Raft等,并通过实例分析了在实际业务中如何权衡CAP,以确保系统的正确性和健壮性。
摘要由CSDN通过智能技术生成

 文章目录


1. 分布式的定义
2. CAP理论的定义
3. 集群/分布式/微服务定义区分
4. 保证一致性的算法有哪些及CAP/共识算法的解释
5. 常用中间件都使用了哪些算法
6. 日常业务开发中CAP的思考

 分布式的定义


        分布式的本质:利用多台机器上进行计算和存储,为了防止某些台机器发生网络延迟、节点故障等问题,就需要使用”算法或者技术“协调”多台机器来一起工作,确保系统的正确性和健壮性。这个协调按照场景来分有以下几个方面,从业务开发容易理解的角度排序如下

  • 无状态业务集群(我们现在开发的绝大部分应用),这个的协调是 微服务与服务均衡之间的协调,微服务之间需要实时的服务注册与发现, 前后端之间需要实时的负载均衡与摘流 ,协调的发起方是:我们的业务应用,协调的接收方是注册中心或者SLB,更多的是通过技术手段实现的单边通知行为
  • 分布式锁的管理:在分布式系统中,由于多个节点同时访问共享资源,为了避免出现数据竞争等问题,需要使用分布式锁来实现协调和同步。这个是业务机器利用分布式锁来协调多个同事先来后到,不要抢活.
  • 分布式任务调度:在分布式系统中,需要对任务进行调度和分配,以便使得任务能够在各个节点上合理地分配和执行,从而提高系统的效率和性能。这个是分布式系统本身,合理的安排任务而进行的资源分配和执行 
  •  分布式事务的管理:在分布式系统中,由于多个节点同时参与一个事务,需要通过协调来确保事务的一致性和完整性。这是业务系统本身发起,协调器负责协调,多份异构数据的逻辑转化保证强一直
  • 分布式缓存的管理:在分布式系统中,需要对缓存进行管理和协调,以便保证各个节点之间缓存的一致性和有效性。协调主备缓存的一致性问题,以及集群扩缩容缓存数据一致性。(这个更多的是通过技术手段, 准实时复制,拷贝,切流实现的)
  • 分布式系统的管理和控制:在分布式系统中,需要对各个节点进行管理和控制,例如节点的加入、退出、状态监控等。这个是分布式系统本身对自身机器的管理协调

        可以看出,其实不知不觉中我们已经身处一个被分布式包围的环境中了,而分布式环境下作为开发最重要,最核心需要解决的问题就是保证系统的正确性和健壮性,为了认识保证系统的正确性和健壮性有多困难,有大佬提出了大名鼎鼎的CAP理论来帮助我们普通开发者认知所面临问题的复杂性,以及指导解决问题的方向


 CAP理论定义


        CAP是Consistency、Availability、Partition Tolerance的首字母,不同的资料对这三个词的解释稍有差异,现在更广泛被接收的定义是:在一个分布式系统(指互相连接并共享数据的节点的集合&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值