思路
这一题我也懵逼,暴力针对每个数字进行判断肯定是超时的。所以只能找规律了。看了题解的答案。总结一下:
首先针对传进来的数字n,求解他的三个参数:
- 他的最高位high是哪个数字
- pow=Math.pow(10,他的位数-1),这是将n划分成“整数部分“和零碎部分,例如将3423划分为3个1000和423两部分。用pow表示其中的1000
- 就是零碎部分 last=n-highpow
要讨论1-n中1的个数,则可以将统计任务分成两部分:统计最高位中1的个数和非最高位中1的个数,二最高位为1的数字可以直接计算出来,非最高位的部分可以进行递归变成最高位进行统计,详细解释见下:
根据n的最高位进行讨论(因为要求的是1的个数,高位为1要单独处理):
1)若n的最高位high=1,,举例n=1423则包含两部分:
第一: 统计4位数中最高位中的1,很显然就是[1000,n],也就是last+1
第二: 统计4位数中非最高位中的1个数和非四位数中1个数,这一部分也是直接递归。countDigitOne(last)+countDigitOne(pow-1):举例就是[1001,1423]的每个数字的下三位中1的个数,直接变成统计[1,423]中1个数。二pow-1则表示统计[1,999]中的1个数。这俩都是直接递归进入下一层处理。
2) 若n的最高位high!=1,举例n=42345,也是包含两部分:
第一: 统计五位数中最高位中的1的个数,很显然因为high部位一,这一部分直接算:[10000,19999],共pow个。
第二: 统计五位数中非最高位中的1和非五位数中的1,即[0,40000]中非最高位中1个数,也是可以递归解决highcountDigitOne(pow-1)。和[40001,42345]中非最高位中1个数,变成统计[1,2345 ]中1个数,直接递归。countDigitOne(last)
代码
class Solution {
public int countDigitOne(int n) {
if(n<=0) return 0;
String numStr=String.valueOf(n);
int high=numStr.charAt(0)-'0';//这个数的最高位
int pow=(int)Math.pow(10,numStr.length()-1);
int last=n-pow*high;
if(high==1){
return countDigitOne(pow-1)+last+1+countDigitOne(last);
}
else
return pow+high*countDigitOne(pow-1)+countDigitOne(last);
}
}