无论是排列、组合还是子集问题,简单说无非就是让你从序列 nums
中以给定规则取若干元素,主要有以下几种变体:
- 元素无重不可复选,即
nums
中的元素都是唯一的,每个元素最多只能被使用一次,这也是最基本的形式。
以组合为例,如果输入nums = [2,3,6,7]
,和为 7 的组合应该只有[7]
。 - 元素可重不可复选,即
nums
中的元素可以存在重复,每个元素最多只能被使用一次。
以组合为例,如果输入nums = [2,5,2,1,2]
,和为 7 的组合应该有两种[2,2,2,1]
和[5,2]
。 - 元素无重可复选,即
nums
中的元素都是唯一的,每个元素可以被使用若干次。
以组合为例,如果输入nums = [2,3,6,7]
,和为 7 的组合应该有两种[2,2,3]
和[7]
。
但无论形式怎么变化,其本质就是穷举所有解,而这些解呈现树形结构,所以合理使用回溯算法框架,稍改代码框架即可把这些问题一网打尽。
记住如下子集问题和排列问题的回溯树,就可以解决所有排列组合子集相关的问题:
子集(元素无重不可复选)
力扣第 78 题「 子集」就是这个问题:
我们通过保证元素之间的相对顺序不变来防止出现重复的子集。整个推导过程就是这样一棵树:
注意这棵树的特性:
如果把根节点作为第 0 层,将每个节点和根节点之间树枝上的元素作为该节点的值,那么第 n 层的所有节点就是大小为 n 的所有子集。
你比如大小为 2 的子集就是这一层节点的值
那么再进一步,如果想计算所有子集,那只要遍历这棵多叉树,把所有节点的值收集起来不就行了?
直接看代码:
class Solution {
List<List<Integer>> res=new ArrayList<>();
public List<List<Integer>> subsets(int[] nums) {
dfs(new ArrayList<>(),nums,0,nums.length);
return res;
}
public void dfs(List<Integer> list,int[] nums,int start,int n){
res.add(new ArrayList<>(list));
for(int i=start;i<n;i++){
list.add(nums[i]);
dfs(list,nums,i+1,n);
list.remove(list.size()-1);
}
}
}
我们使用 start
参数控制树枝的生长避免产生重复的子集,用 list
记录根节点到每个节点的路径的值,同时在前序位置把每个节点的路径值收集起来,完成回溯树的遍历就收集了所有子集:
组合(元素无重不可复选)
比如力扣第 77 题「 组合」:
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// 主函数
public List<List<Integer>> combine(int n, int k) {
backtrack(1, n, k);
return res;
}
void backtrack(int start, int n, int k) {
// base case
if (k == track.size()) {
// 遍历到了第 k 层,收集当前节点的值
res.add(new LinkedList<>(track));
return;
}
// 回溯算法标准框架
for (int i = start; i <= n; i++) {
// 选择
track.addLast(i);
// 通过 start 参数控制树枝的遍历,避免产生重复的子集
backtrack(i + 1, n, k);
// 撤销选择
track.removeLast();
}
}
排列(元素无重不可复选)
力扣第 46 题「 全排列」就是标准的排列问题:
刚才讲的组合/子集问题使用 start
变量保证元素 nums[start]
之后只会出现 nums[start+1..]
中的元素,通过固定元素的相对位置保证不出现重复的子集。
但排列问题本身就是让你穷举元素的位置,nums[i]
之后也可以出现 nums[i]
左边的元素,所以之前的那一套玩不转了,需要额外使用 used
数组来标记哪些元素还可以被选择。
标准全排列可以抽象成如下这棵二叉树:
我们用
used
数组标记已经在路径上的元素避免重复选择,然后收集所有叶子节点上的值,就是所有全排列的结果:
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// track 中的元素会被标记为 true
boolean[] used;
/* 主函数,输入一组不重复的数字,返回它们的全排列 */
public List<List<Integer>> permute(int[] nums) {
used = new boolean[nums.length];
backtrack(nums);
return res;
}
// 回溯算法核心函数
void backtrack(int[] nums) {
// base case,到达叶子节点
if (track.size() == nums.length) {
// 收集叶子节点上的值
res.add(new LinkedList(track));
return;
}
// 回溯算法标准框架
for (int i = 0; i < nums.length; i++) {
// 已经存在 track 中的元素,不能重复选择
if (used[i]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
// 进入下一层回溯树
backtrack(nums);
// 取消选择
track.removeLast();
used[i] = false;
}
}
子集/组合(元素可重不可复选)
子集
力扣第 90 题「 子集 II」就是这样一个问题:
就以 nums = [1,2,2]
为例,为了区别两个 2
是不同元素,后面我们写作 nums = [1,2,2']
。
所以我们需要进行剪枝,如果一个节点有多条值相同的树枝相邻,则只遍历第一条,剩下的都剪掉,不要去遍历:
按照之前的思路画出子集的树形结构,显然,两条值相同的相邻树枝会产生重复:
class Solution {
List<List<Integer>> res=new ArrayList<>();
List<Integer> list=new ArrayList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
// 先排序,让相同的元素靠在一起
Arrays.sort(nums);
dfs(nums,0);
return res;
}
public void dfs(int[] nums,int start){
// 前序位置,每个节点的值都是一个子集
res.add(new ArrayList<>(list));
for(int i=start;i<nums.length;i++){
// 剪枝逻辑,值相同的相邻树枝,只遍历第一条
if(i>start&&nums[i]==nums[i-1]) continue;
list.add(nums[i]);
dfs(nums,i+1);
list.remove(list.size()-1);
}
}
}
组合
我们说了组合问题和子集问题是等价的,所以我们直接看一道组合的题目吧,这是力扣第 40 题「 组合总和 II」:
import java.util.*;
class Solution {
private List<List<Integer>> res;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
res=new ArrayList<>();
// 记录回溯的路径
List<Integer> list=new ArrayList<>();
// 先排序,让相同的元素靠在一起
Arrays.sort(candidates);
dfs(candidates,list,target,0);
return res;
}
public void dfs(int[] candidates,List<Integer> list,int target,int idx){
// base case,达到目标和,找到符合条件的组合
if(target==0){
res.add(new ArrayList<>(list));
return;
}else{
for(int i=idx;i<candidates.length;i++){
// 剪枝逻辑,值相同的树枝,只遍历第一条
if(i > idx && candidates[i] == candidates[i-1]) continue;
if(target>=candidates[i]){
// 做选择
list.add(candidates[i]);
// 递归遍历下一层回溯树
dfs(candidates,list,target-candidates[i],i+1);
// 撤销选择
list.remove(list.size()-1);
}else{// base case,超过目标和,直接结束
break;
}
}
}
}
}
排列(元素可重不可复选)
排列问题的输入如果存在重复,比子集/组合问题稍微复杂一点,我们看看力扣第 47 题「 全排列 II」:
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
boolean[] used;
public List<List<Integer>> permuteUnique(int[] nums) {
used=new boolean[nums.length];
// 先排序,让相同的元素靠在一起
Arrays.sort(nums);
dfs(nums);
return res;
}
public void dfs(int[] nums){
if(track.size()==nums.length){
res.add(new ArrayList<>(track));
return;
}
for(int i=0;i<nums.length;i++){
if(used[i]) continue;
// 新添加的剪枝逻辑,固定相同的元素在排列中的相对位置
if(i!=0&&nums[i]==nums[i-1]&&!used[i-1]) continue;
track.add(nums[i]);
used[i]=true;
dfs(nums);
used[i]=false;
track.remove(track.size()-1);
}
}
}
你对比一下之前的标准全排列解法代码,这段解法代码只有两处不同:
- 对
nums
进行了排序。 - 添加了一句额外的剪枝逻辑。
类比输入包含重复元素的子集/组合问题,你大概应该理解这么做是为了防止出现重复结果。
但是注意排列问题的剪枝逻辑,和子集/组合问题的剪枝逻辑略有不同:新增了 !used[i - 1]
的逻辑判断。
这个地方理解起来就需要一些技巧性了,且听我慢慢到来。为了方便研究,依然把相同的元素用上标 '
以示区别。
假设输入为 nums = [1,2,2']
,标准的全排列算法会得出如下答案:
[
[1,2,2'],[1,2',2],
[2,1,2'],[2,2',1],
[2',1,2],[2',2,1]
]
显然,这个结果存在重复,比如 [1,2,2']
和 [1,2',2]
应该只被算作同一个排列,但被算作了两个不同的排列。
所以现在的关键在于,如何设计剪枝逻辑,把这种重复去除掉?
答案就是,保证相同元素在排列中的相对位置保持不变
比如说 nums = [1,2,2']
这个例子,我保持排列中 2
一直在 2'
前面。
标准全排列算法之所以出现重复,是因为把相同元素形成的排列序列视为不同的序列,但实际上它们应该是相同的;而如果固定相同元素形成的序列顺序,当然就避免了重复。
那么反映到代码上,你注意看这个剪枝逻辑:
// 新添加的剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
// 如果前面的相邻相等元素没有用过,则跳过
continue;
}
当出现重复元素时,比如输入 nums = [1,2,2’,2’‘],2’ 只有在 2 已经被使用的情况下才会被选择,同理,2’’ 只有在 2’ 已经被使用的情况下才会被选择,这就保证了相同元素在排列中的相对位置保证固定。
子集/组合(元素无重可复选)
输入数组无重复元素,但每个元素可以被无限次使用。,力扣第 39 题「 组合总和」:
这道题说是组合问题,实际上也是子集问题:candidates
的哪些子集的和为 target
?
想解决这种类型的问题,也得回到回溯树上,我们不妨先思考思考,标准的子集/组合问题是如何保证不重复使用元素的?
答案在于 backtrack
递归时输入的参数 start
:
// 无重组合的回溯算法框架
void backtrack(int[] nums, int start) {
for (int i = start; i < nums.length; i++) {
// ...
// 递归遍历下一层回溯树,注意参数
backtrack(nums, i + 1);
// ...
}
}
这个 i
从 start
开始,那么下一层回溯树就是从 start + 1
开始,从而保证 nums[start]
这个元素不会被重复使用:
那么反过来,如果我想让每个元素被重复使用,我只要把 i + 1 改成 i 即可:
// 可重组合的回溯算法框架
void backtrack(int[] nums, int start) {
for (int i = start; i < nums.length; i++) {
// ...
// 递归遍历下一层回溯树,注意参数
backtrack(nums, i);
// ...
}
}
这相当于给之前的回溯树添加了一条树枝,在遍历这棵树的过程中,一个元素可以被无限次使用:
当然,这样这棵回溯树会永远生长下去,所以我们的递归函数需要设置合适的 base case
以结束算法,即路径和大于 target
时就没必要再遍历下去了。
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯的路径
LinkedList<Integer> track = new LinkedList<>();
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
backtrack(candidates,target,0);
return res;
}
public void backtrack(int[] candidates,int target,int start){
// base case,找到目标和,记录结果
if(target==0){
res.add(new ArrayList<>(track));
return;
}
for(int i=start;i<candidates.length;i++){
// base case,超过目标和,停止向下遍历
if(candidates[i]>target) break;
//选择当前元素
track.add(candidates[i]);
target-=candidates[i];
// 递归遍历下一层回溯树
// 同一元素可重复使用,注意参数
backtrack(candidates,target,i);
// 撤销选择 nums[i]
target+=candidates[i];
track.remove(track.size()-1);
}
}
}