- 博客(137)
- 收藏
- 关注
原创 具身智能的概念
具有物理形态的智能体,通过‘感知-决策-行动-反馈’闭环系统与物理环境进行持续交互,能够理解、适应并改造环境,具备在开放世界中完成复杂任务能力的智能系统。具身性(Embodiment)智能体必须拥有物理载体(如机器人本体),配备多模态传感器(视觉、触觉、力觉等)和执行器(电机、关节等),使其能与环境发生物理作用。清华大学研究进一步指出,具身性不仅指“有身体”,更包含对重力、摩擦力等物理规律的内在理解。交互性(Interaction)智能行为源于与环境的双向动态交互,而非仅依赖内部模型。
2025-12-17 14:31:44
544
原创 大模型能力测试与数据集
能力维度推荐数据集通用知识 & 语言理解MMLU(英)、C-Eval / CMMLU(中)数学推理GSM8K(基础)、MATH(进阶)、AMO-Bench(顶尖)代码能力安全对齐TruthfulQA + AdvBench + HHH人工评估中文综合SuperCLUE 或 AGIEval + CMMLU效率性能自建压力测试 + MLPerf💡最佳实践采用“自动评测 + 人工盲测 + 真实场景灰度”三结合方式,避免仅依赖榜单分数。例如用模式进行匿名A/B测试,更能反映用户体验。
2025-12-17 14:12:11
722
原创 vLLM、SGLang、TRT-LLM这3种推理服务的区别
vLLM是“通用高效”的代表,平衡性能与易用;SGLang是“编程+执行一体化”的创新者,强调开发者体验与高级功能;TRT-LLM是“硬件深度优化”的工业标杆,牺牲灵活性换取极致性能。选择时应根据硬件环境、模型类型、开发资源与业务需求综合权衡。例如,在 H100 集群上部署 Qwen3-32B 对话服务,TRT-LLM 或 SGLang 更优;而在消费级 GPU 上快速验证 LLaMA3,则 vLLM 更为便捷。
2025-12-17 10:57:52
465
原创 亚信科技数智本体平台(AISWare Ontology Platform)
在平台发布同期,亚信科技联合 中国移动、中信科移动、清华大学智能产业研究院、Intel、高通、香港理工大学、同济大学、IEEE、紫金山实验室、中山大学、济南大学、阿尔伯塔大学 等 10余家顶尖机构,共同启动 “本体开源计划”。正如亚信科技CTO欧阳晔在演讲中所言:“共创本体驱动的Agentic AI应用”,数智本体平台正是实现这一愿景的 关键使能器。“数智本体平台的开源,标志着亚信科技在‘AI原生基础设施’布局上的又一次关键突破。对AI系统 提供可解释、可追溯、无幻觉的推理基础,迈向“可信AI”
2025-12-09 11:06:27
963
原创 GoF提出的经典设计模式
它们通过抽象化常见问题的解决方案,帮助开发者构建高内聚、低耦合、可复用、易扩展的系统架构。单例、工厂、观察者、策略等模式分别从对象创建、结构组合、行为协作等维度提供了标准化的应对策略,至今仍在 Java、C#、Python、Go 等主流语言及框架(如 Spring、Laravel)中广泛应用。通过定义 DiscountStrategy 接口,并由 PercentageDiscount、FixedAmountDiscount 等类实现,订单计算逻辑只需持有策略引用,即可灵活切换折扣方式,而无需修改主流程。
2025-12-08 15:46:03
416
原创 Vibe编程(Vibe Coding)
Vibe编程”(Vibe Coding,又称“氛围编程”或“沉浸式编程”)是一种由人工智能(AI)驱动的新型软件开发范式,其核心理念是:开发者不再逐行手写代码,而是通过自然语言向大型语言模型(LLM)描述需求,由AI自动生成可运行的程序代码。词义来源:“Vibe”意为“氛围”或“感觉”,强调一种凭直觉、重体验、轻细节的开发状态——开发者“沉浸于AI生成代码的氛围中”,甚至“忘记代码本身的存在”。输入:开发者用日常语言(如中文、英语)描述功能目标(例如:“做一个登录页面,带邮箱验证和密码强度提示”)。
2025-12-08 10:20:16
417
原创 「Interleaved Thinking」(交错思维)技术
MiniMax M2 所采用的 「Interleaved Thinking」(交错思维) 是一种面向 AI Agent 的新型推理机制,其核心思想是:在显式推理(reasoning)与工具调用(tool use)之间交替进行,并将每一步的推理状态持续传递到后续步骤中。MiniMax M2 的 Interleaved Thinking 技术,本质是为大模型 Agent 引入了一种类人的问题解决机制——不是靠一次完美规划,而是通过持续感知、动态调整、累积认知来应对复杂现实任务。
2025-12-05 10:59:54
478
原创 LangChain v1.0简介
langchain-[partner](如 langchain-openai):官方深度集成的厂商包,提供最优实现(如 ChatOpenAI),支持最新特性(如 structured output、content blocks),仅依赖 langchain-core,生产环境强烈推荐。langchain(主包):聚焦现代 Agent 构建,提供 create_agent()、init_chat_model() 等高阶 API,自动重导出 core 中的常用类,适合90%的实际项目。
2025-12-05 10:00:56
477
原创 本体在实际工程落地项目中的主要作用
在实际工程落地项目中,本体(Ontology) 已从早期“学术玩具”或“知识图谱附属品”的角色,转变为支撑大模型(LLM)与企业业务深度融合的关键基础设施。因此,在企业 AI 工程中,本体已从“要不要做”转向“如何高效构建与迭代”,成为连接 湿世界(人类业务) 与 干世界(机器系统) 的核心桥梁。问题背景:企业系统林立(ERP、CRM、MES等),每个系统对“客户”“订单”“资产”等核心概念的定义、字段命名、状态码均不一致。例如:在能源企业本体中模拟“若某油田停产,对供应链、财务、人力的影响”。
2025-12-04 15:49:17
550
原创 Ollama 与 LM Studio 详细对比分析
选择 LM Studio:如果你希望"点开就能聊天",不想碰命令行,重视易用性和中文支持选择 Ollama:如果你需要将大模型嵌入自己的应用、写脚本自动化、或部署为服务国内用户:优先考虑 LM Studio(Ollama 模型下载可能极慢)追求性能与可维护性:Ollama 是更可持续的选择。
2025-11-18 14:27:51
817
原创 开源 NL2SQL(自然语言转 SQL)项目
💡 趋势判断:NL2SQL 正从“单次 SQL 生成”向 Agentic Data Analyst(智能数据分析师) 演进——不仅能查数据,还能解释、可视化、提出建议,并在人类监督下持续学习。以下是对当前主流开源 NL2SQL(自然语言转 SQL)项目的系统性对比分析,涵盖 GitHub 活跃度、核心技术特点、基准性能、部署易用性以及优劣势。传统 benchmark(如 WikiSQL、Spider)主要衡量模型在标准数据集上的泛化能力,但真实企业场景更关注 Schema 理解、安全性和可解释性。
2025-11-18 10:45:19
849
原创 自然语言问数系统(NL2SQL)
总的来说,构建NL2SQL系统是一个在“智能”与“可控”之间寻求平衡的过程。对于快速验证和简单场景,MindSQL或Chat2DB是不错的起点。若追求高精度和可控性,尤其在复杂企业环境中,推荐采用DB-GPT框架,并借鉴NL2DSL2SQL的架构思想引入语义层。无论选择哪条路径,严格的后端安全校验(Guard层)都是不可或缺的底线。
2025-11-18 10:24:19
1103
原创 RAG系统组件、技术栈和注意事项
一个高效的RAG(检索增强生成)系统通过结合外部知识库,能显著提升大语言模型回答的准确性和专业性。要构建这样的系统,关键在于理解其核心组件、选对技术栈并避开常见的“坑”。下面这个表格梳理了RAG系统的核心组成部分和目前主流的技术栈,可以帮你建立一个整体的认识。
2025-11-18 10:07:27
500
原创 通义灵码和Qoder的差异
均提供代码补全、智能问答、跨文件理解、调试辅助等基础功能,并引入“编程智能体”概念,能执行多步骤任务。通义灵码支持跨文件重构与持久记忆;Qoder 的 Quest 模式可将模糊需求(如“开发一个带用户系统的电商后台”)自动拆解为技术选型、模块设计、前后端代码、测试用例及部署脚本,实现端到端交付,极大提升新项目启动效率。提供私有化部署、敏感信息过滤、审计日志、专属 VPC 等功能,已通过 ISO/IEC 42001、信通院 4+ 评级等多项认证,特别适合金融、保险等对数据安全要求极高的行业。
2025-11-17 14:28:33
2947
原创 相似度计算算法系统性总结
算法数据类型是否考虑大小是否考虑顺序是否处理稀疏典型场景余弦相似度向量❌(只方向)❌✅文本、推荐皮尔逊相关数值✅(中心化)❌⚠️用户评分Jaccard集合❌❌✅标签、关键词Dice集合❌❌✅图像分割Tanimoto实数向量✅❌✅化学、文档TF-IDF+Cos文本⚠️(加权)❌✅信息检索BERT相似度文本✅✅✅语义匹配欧氏距离向量✅❌❌聚类、图像。
2025-11-04 17:33:14
864
原创 提示词工程与上下文工程的区别与联系
你可以将构建一个强大的LLM应用看作是在导一场戏提示词工程是你写给演员的具体某句台词的演绎方式(比如“这里要表现出愤怒和失望”)。上下文工程是你写的整个剧本、人物小传、以及导演在拍摄过程中对演员的持续引导,确保演员从头到尾都沉浸在角色里,不会演着演着就忘了自己的身份和剧情。两者相辅相成,缺一不可,共同决定了最终演出的(模型输出的)质量。
2025-11-03 14:00:44
938
原创 Dify概念简介
总的来说,你可以将 Dify 理解为AI 应用开发领域的“操作系统”或“全栈平台”。它通过整合模型、数据、工具和运维监控,提供了一站式的解决方案,让企业和开发者能够更专注于业务逻辑和创新,而非复杂的基础设施搭建。
2025-10-30 17:35:35
360
原创 单/多智能体系统的优缺点及未来展望
其发展路径将是渐进式的,从少量智能体的协作开始,逐步扩展到大规模系统。多智能体系统是由多个智能体组成的集合,这些智能体通过共享环境进行交互,它们可能协作、竞争或二者兼有,以实现个体或共同的目标。单智能体系统是指在一个环境中,只有一个智能体进行感知、决策和行动,以完成特定任务。未来不是“二选一”,而是“分工协作,融合发展”的格局。两种路径将根据应用场景的需求,各自深化并相互融合。方向,是通往更高级人工智能(如AGI)和复杂社会模拟的关键路径。单智能体系统远未过时,其发展将集中在。
2025-10-30 15:46:58
1205
原创 网络切片概念简述
灵活性:可以快速创建、修改和删除切片,响应市场变化。定制化:为不同行业和应用提供“量体裁衣”的网络服务。效率与成本:最大化利用共享的物理基础设施,降低建设和运营成本。安全隔离:一个切片出现故障或受到攻击,不会影响到其他切片。商业模式创新:运营商可以向企业客户直接“销售”切片服务,开辟新的收入来源。网络切片是5G的灵魂技术之一。它从根本上改变了网络的建设和服务模式,从“一刀切”的公共服务,转变为可以按需定制的、多样化的“网络即服务”。
2025-10-30 14:25:54
591
原创 Visual Studio Code (VS Code) 官方下载渠道
Visual Studio Code (VS Code) 是一款由微软开发的免费、开源且跨平台的代码编辑器。要获取正版软件,最安全可靠的方式是访问其官方网站。
2025-10-30 10:59:14
1137
原创 本体论和知识图谱的联系与区别
联系:本体论是知识图谱的理论基础和设计规范。一个设计良好的本体是构建一个高质量、可推理的知识图谱的前提。知识图谱是本体现论思想的具体实现和应用。区别本体关乎“应该是什么”,它是一套规则和定义;知识图谱关乎“实际是什么”,它是遵循这些规则填充进来的具体数据。因此,当你听到“知识图谱”时,可以想到它是一个巨大的、充满具体事实的网络。而当你听到“本体”时,应该想到的是定义这个网络结构的“宪法”。
2025-10-29 14:43:31
697
原创 本体论的基本概念
简单来说,本体论是研究“存在本身”的哲学分支。它不问“某个东西是否存在”(比如“外星人存在吗?”),而是追问:你可以把本体论想象成哲学的“宇宙库存清单”,它试图列出并定义构成现实的最基本“元件”及其组织方式。这些是本体论讨论中最常出现的基本构件。实体属性关系事件/过程共相与殊相这是理解本体论争论的关键。实在论概念论唯名论存在与不存在一与多抽象与具体必然与偶然心物问题有趣的是,这个古老的哲学术语在计算机科学和人工智能领域获得了新生。定义:在信息科学中,一个“本体”是一个对领域知识进行形式化和明确化的规范。它定
2025-10-29 14:35:30
668
原创 世界模型和大语言模型的区别
特性大语言模型世界模型本质符号世界的专家物理世界的专家输入文本像素、状态、传感器数据输出文本预测的状态、图像、视频核心学习语言的统计规律学习物理的动态规律关系互补且正在融合,共同构成通向通用人工智能的两大基石。可以想象,一个完美的智能体既需要LLM的“大脑”来理解和运用人类的知识与语言,也需要世界模型的“小脑”来理解和操控所处的物理环境。两者结合,才能创造出真正能在现实世界中行动和思考的智能。
2025-10-23 14:57:29
676
原创 世界模型简介
简单来说,世界模型是一个人工智能系统内部形成的、关于外部世界如何运作的“心智模型”或“模拟器”。它让AI能够理解环境中的基本规则(例如物理规律、因果关系),并根据过去的经验来预测未来的状态。它不是存储大量的具体数据,而是学习世界的抽象规律。想象一下你在脑子里玩“俄罗斯方块”。你不需要真的移动方块,就能在脑海里预测方块旋转后会落在哪里、是否会消除一行。这个在你脑海里运行的“游戏引擎”,就是你的世界模型。它基于你对游戏规则的理解,对未来进行模拟。
2025-10-23 14:51:47
699
原创 液态神经网络(Liquid Neural Networks, LNNs)代码示例
【代码】液态神经网络(Liquid Neural Networks, LNNs)代码示例。
2025-10-14 11:36:46
317
原创 SGLang简介
SGLang 是一个旨在提升LLM应用开发效率和运行效率的框架。它通过更优雅的编程接口让开发者轻松编写复杂提示词逻辑,并通过其RadixAttention技术自动缓存和复用公共前缀,极大地减少了不必要的计算,从而实现了低延迟和高吞吐量。如果你正在构建复杂的LLM应用(如智能体、多步推理链)、需要进行大量提示词评估(evaluation)或者 simply want your LLM programs to run faster,SGLang 是你应该密切关注和使用的强大工具。
2025-09-11 10:24:54
1158
原创 Wait, We Don’t Need to “Wait”! Removing Thinking Tokens Improves Reasoning Efficiency
NOWAIT 是一个“即插即用”的推理优化工具,它通过屏蔽“无用反思”关键词,让大模型更快、更省地推理,而不牺牲准确性。
2025-07-31 15:13:23
458
原创 大模型技术对部分岗位的影响
大模型技术正推动一场劳动力市场的结构性洗牌——高盛预测未来十年约6%-7%岗位被替代,但历史表明技术革命创造的岗位终将超过消灭的数量。短期阵痛不可避免,但长期来看,适应AI协作、持续学习跨界能力的人,将在新生态中占据更核心的位置。
2025-07-29 21:01:54
780
原创 Uvicorn
Uvicorn 是现代化 Python Web 生态中的重要组件,尤其适合异步应用。如果你是 FastAPI 或 Starlette 用户,它几乎是默认选择。对于生产部署,建议搭配反向代理(如 Nginx)和进程管理工具(如 Gunicorn)。
2025-06-30 14:39:24
631
原创 Layer by Layer: Uncovering Hidden Representations in Language Models
研究发现,中间层的表示可以在多种下游任务中提供优于最终层的表现,这对模型的可解释性、鲁棒性和效率都有潜在影响。利用这些强相关性,可以在无监督的情况下选择高性能的层,例如通过基于DiME的层选择方法,可以使Pythia-410M模型的MTEB得分平均提高3%。总的来说,这项研究为理解大型语言模型的内部表示提供了新的视角,并为进一步的研究奠定了基础。更好的识别潜在特征和表示的方法可能会放大潜在偏见,因此未来的工作需要探索确保中间层表示不会不成比例地强化偏见或导致实际应用中的意外差异的方法。
2025-06-27 20:47:50
449
原创 Agent-to-Agent (A2A) 协议全面解析:定义、原理、应用与未来
Agent-to-Agent(A2A)协议是由Google在2025年4月正式推出的开放标准通信协议,旨在解决不同AI智能体之间的互操作性问题。该协议为异构AI系统提供了一套统一的交互规范,使来自不同平台、不同供应商的智能体能够像人类团队一样进行有效协作。A2A协议的诞生标志着AI技术发展进入了一个新阶段——从单一智能体的能力提升转向多智能体系统的协同增效。在A2A协议出现之前,AI领域面临着严重的"巴别塔困境":每个智能体都有自己独特的通信方式和数据格式,导致跨系统协作极为困难。
2025-06-27 15:11:30
3011
原创 Server-Sent Events (SSE)
Server-Sent Events (SSE) 是一种HTML5技术,允许服务器通过HTTP连接向客户端(通常是网页浏览器)单向推送实时数据。与传统的客户端轮询不同,SSE建立了一个持久连接,服务器可以随时通过这个连接发送数据更新。SSE是单向通信协议,数据只能从服务器流向客户端,这与WebSocket的双向通信形成对比。这种特性使得SSE特别适合只需要服务器推送数据的场景。
2025-06-27 15:01:38
1229
原创 SSE(Server-Sent Events)、WebSocket和Polling的对比
根据实际需求(实时性、双向性、兼容性)和系统资源(服务器负载、带宽)综合选择。
2025-06-23 18:06:27
601
原创 大语言模型智能体开发的技术框架与应用前景
大语言模型(LLM)智能体开发已成为人工智能领域最活跃的研究方向之一,它通过赋予大模型规划、记忆和工具使用能力,极大地扩展了传统语言模型的应用边界。本文将系统梳理当前智能体开发的主流技术框架与工具链,分析其核心特性和适用场景,并展望未来主要应用方向和发展趋势。从金融保险行业的自动化流程到多智能体协作系统,从开源框架的快速发展到企业级解决方案的涌现,智能体技术正在重塑人机交互模式和工作流程自动化。
2025-06-11 21:25:23
1263
原创 N8N概述
(发音为 “n-eight-n”)是一个开源的,类似于或,但更注重和。它允许用户通过可视化界面连接不同的应用程序、API 和服务,构建自动化流程(称为。
2025-06-06 22:24:57
2250
原创 博弈论概述
中如何行动和决策的数学理论。博弈论通过数学模型揭示策略互动的本质,为理解竞争与合作提供了强大工具,但其应用需结合具体情境和现实约束。的情境中如何做出最优决策,即每个人的收益不仅取决于自己的选择,还取决于他人的选择。若不存在其他策略组合能使至少一人更好而不损害他人,则该策略组合是帕累托最优。动态博弈中,玩家的策略在每个子博弈中都是最优的(排除不可信的威胁)。不完全信息博弈中,玩家基于概率信念选择最优策略。无论其他玩家如何选择,某一策略对玩家始终最优。在均衡中,每个玩家的策略是对其他玩家策略的。
2025-06-06 22:12:02
749
原创 向量数据库和关系型数据库的区别,优点,缺点和典型应用场景
向量数据库和关系型数据库是两种截然不同的数据管理系统,各自针对特定的数据模型和查询模式进行了优化。随着人工智能和大数据技术的发展,向量数据库作为新兴的数据库类型,在处理非结构化数据方面展现出独特优势。本文将从数据模型、查询方式、优缺点及典型应用场景等多个维度,全面比较这两种数据库的区别。
2025-05-01 19:16:12
1716
1
原创 为什么vllm能够加快大模型推理速度?
vLLM加速大模型推理的核心技术原理可分解为以下关键创新点:KV Cache分页机制将传统连续存储的KV Cache拆分为非连续内存页,类似操作系统内存分页管理,消除内存碎片并实现动态分配。13B模型单请求KV Cache从1.6GB降至可弹性扩展的块状存储内存共享优化相同前缀的请求(如多用户问相似问题)可共享KV Cache内存页,降低重复计算连续批处理(Continuous Batching)动态合并不同进度的请求至同一批次,GPU利用率提升3倍以上定制化CUDA Kernel针对注
2025-04-26 21:07:14
890
原创 扩散模型简介
扩散模型通过逆扩散过程生成数据,在图像、文本等领域表现优异,但需权衡生成质量与计算效率。未来研究方向包括模型加速、多模态融合及理论优化。
2025-04-12 19:43:50
383
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅