数据仓库
文章平均质量分 60
c77_cn
这个作者很懒,什么都没留下…
展开
-
构建星型数据仓库五步法
说明:本文截取了原文中的一个片段,原片段名称为“构建企业级数据仓库五步法”,但我认为有些文不对题,或许改成“构建星型数据仓库五步法”更合适。1.确定主题即确定数据分析或前端展现的主题。例如:我们希望分析某年某月某一地区的啤酒销售情况,这就是一个主题。主题要体现出某一方面的各分析角度(维度)和统计数值型数据(量度)之间的关系,确定主题时要综合考虑。我们可以形象的将一个主题想象为一颗星星:统计转载 2015-03-03 17:45:49 · 1362 阅读 · 0 评论 -
数据仓库的基本架构
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层:源数据、数据仓库、数据应用。从图中可以看出数据仓库的数据来源于转载 2015-03-04 15:17:56 · 477 阅读 · 0 评论 -
数据立方体与OLAP
数据立方体关于数据立方体(Data Cube),这里必须注意的是数据立方体只是多维模型的一个形象的说法。立方体其本身只有三维,但多维模型不仅限于三维模型,可以组合更多的维度,但一方面是出于更方便地解释和描述,同时也是给思维成像和想象的空间;另一方面是为了与传统关系型数据库的二维表区别开来,于是就有了数据立方体的叫法。所以本文中也是引用立方体,也就是把多维模型以三维的方式为代表进行展现和描述,其转载 2015-03-04 15:49:18 · 1122 阅读 · 0 评论 -
数据仓库的多维数据模型
多维数据模型是为了满足用户从多角度多层次进行数据查询和分析的需要而建立起来的基于事实和维的数据库模型,其基本的应用是为了实现OLAP(Online Analytical Processing)。当然,通过多维数据模型的数据展示、查询和获取就是其作用的展现,但其真的作用的实现在于,通过数据仓库可以根据不同的数据需求建立起各类多维模型,并组成数据集市开放给不同的用户群体使用,也就是根据需求定制的各转载 2015-03-04 15:25:36 · 1110 阅读 · 0 评论