深度学习
c8241998
这个作者很懒,什么都没留下…
展开
-
paddlepaddle 人脸识别爬坑指南
综述爬坑一天,终于整出来一套在目前数据集上可以100%准确率的模型,特此分享爬坑心得~因为整体代码结构和上篇手写数字的文章里代码结构比较相似,所以这里只贴出部分代码网络结构目前采用的两套模型是cnn以及vgg,效果都非常不错,其他模型可能后续还会尝试。CNN# cnndef convolutional_neural_network(image, type...原创 2019-06-12 22:26:03 · 2610 阅读 · 3 评论 -
minst 手写数字识别实战
综述手写数字识别是每个学习神经网络的人上手操作的必由之路,此次实验基于paddlepaddle框架在百度AI Studio上进行实战,在fork的学习项目基础上做了数据集的修改以及网络结构的改良,最终可正确识别黑底白字及白底黑字的手写数字,在20k张的测试集上呈现99.313%的准确率,基本达到实验目的。网络结构本次实验原有基础网络结构为两层全连接层+一层全连接输出层,经过多次调...原创 2019-06-03 00:14:15 · 2391 阅读 · 0 评论 -
【paddlepaddle】EnforceNotMet: Invoke operator dropout_grad error. 解决方案
paddlepaddle 当试图clone训练模型来生成测试模型的时候,遇到了这种奇葩错误(但是手写数字识别不会出现这个bug)解决方案来自@家行hang同学main_program = fluid.Program()startup_program = fluid.Program()with fluid.program_guard(main_program,start...原创 2019-06-14 15:11:11 · 3251 阅读 · 0 评论 -
深度学习 —— 偏差与方差
概念定义偏差(bias):偏差衡量了模型的预测值与实际值之间的偏离关系。通常在深度学习中,我们每一次训练迭代出来的新模型,都会拿训练数据进行预测,偏差就反应在预测值与实际值匹配度上,比如通常在keras运行中看到的准确度为96%,则说明是低偏差;反之,如果准确度只有70%,则说明是高偏差。 方差(variance):方差描述的是训练数据在不同迭代阶段的训练模型中,预测值的变化波动情况(或称之...转载 2019-09-05 17:27:16 · 1880 阅读 · 1 评论 -
深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢?在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf本文将梳理:每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个...转载 2019-09-21 16:34:25 · 207 阅读 · 0 评论 -
关于Resnet残差网络的理解
随着卷积神经网络的发展和普及,网络深度和架构研究早已经成为人们常见的问题,所以,现在卷积神经网络的趋势发展趋势就是:足够深、足够广。足够深就是网络层数足够深,足够广就意味着不能从传统尺度来解决问题,而应该是多尺度,也就是multi-scale。但是随着网络的深入,一些经典的问题也就随之出现,例如梯度弥散和梯度爆炸。这两种问题都是由于神经网络的特殊结构和特殊求参数方法造成的,也就是链式求导的间接产...原创 2019-10-02 00:38:27 · 824 阅读 · 1 评论 -
准确率(Precision)、召回率(Recall)、F值(F-Measure)
混淆矩阵True Positive(真正,TP):将正类预测为正类数True Negative(真负,TN):将负类预测为负类数False Positive(假正,FP):将负类预测为正类数误报 (Type I error)False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)1、准确率(Accuracy)准确率(acc...原创 2019-10-04 19:20:54 · 2030 阅读 · 0 评论 -
目标检测中性能评价指标
mAP 这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是: 1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数); 2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数; ...原创 2019-10-11 00:46:43 · 996 阅读 · 0 评论