信息物理物流系统用于实体互联网
帕特里克·普乔和富齐娅·乌纳尔
摘要
第四次工业革命无疑影响着数字化物流系统,这些系统将发生巨大演进。物流网络将加强其战略和经济作用。随着数字化的发展,物流网络成为一个完全集成的生态系统,其中包括信息物理系统(CPS)等信息通信技术(ICT)的新进展。这一数字化转型催生了信息物理物流系统(CPLS)的概念。本文描述了基于全息范式的用于物理互联网部署的信息物理物流系统(CPLS)的运行。
关键词 :信息物理物流系统 ⋅ Analytic网络过程 ⋅ 多准则决策 ⋅ Logistics网络 ⋅ Physical互联网
1 引言
被称为“工业4.0”的新工业革命无疑将影响物流领域:我们已经在谈论“物流4.0”。这场新革命基于对象和/或参与者之间,以及现实世界与虚拟世界通过信息通信技术(ICT)创新的深度互联互通[1]。这一数字化转型更广泛地影响着整个工业生态系统。根据[2],数字革命通过直接连接供给与需求,逐步消除了BtoB与BtoC之间的界限。互联网世界的演进所带来的互动性和透明化协作,打破了传统按行业、领域和职业划分的组织模式,并使客户能够参与到价值创造过程中,在一种混合型的(客户‐提供商)协同设计关系中发挥作用。在这种背景下,优势将属于那些能够通过与客户协作,创造出源于互补性的前所未有的机遇的一方。
商业。近年来观察到的技术飞跃,特别是与数值工具的发展相关的技术飞跃,引发了必须整合这些新元素的范式转变。
在制造领域,“工业4.0”基于多种技术进步,其中主要包括信息物理系统(CPS)、物联网(IoT)和服务互联网(IoS)。服务互联网使服务提供商能够通过互联网提供其服务。服务互联网由参与者、服务基础设施、商业模式以及服务本身组成。各种供应商提供简单服务,并将其组合为增值服务;这些服务通过各种渠道传递给用户和消费者[3]。物联网代表一种智能ICT基础设施,能够在动态环境中实现对象(机器和设备)之间的实时通信与协作,以及物理世界与虚拟世界之间的连接。信息物理系统是计算与物理过程的集成。嵌入式计算机和网络监控并控制物理过程,通常通过反馈回路实现,其中物理过程影响计算,而计算也反过来影响物理过程[4]。
根据信息物理系统(CPS)的定义,“事物”和“对象”均可被理解为信息物理系统。因此,物联网可以定义为一个网络,在该网络中,信息物理系统通过唯一的寻址方案[5]相互协作。信息物理系统从而实现了物理元素与虚拟元素之间以及与外部参与者之间的即时和持续交互。由于随时随地获取信息成为可能,对象变得越来越自主,系统也日益可重构。此外,对象和系统所具备的智能能力,或通过通信能力调用能够提供此类智能的远程服务的能力,进一步增强了这一趋势。
在此背景下,“工业4.0”将工厂甚至整个生产链设计为一个大型的信息物理系统(CPS),通过机器‐对象交互实现高度自调节。期望实现灵活性与敏捷性、时间、质量以及成本节约[2]。这指的是信息物理生产系统(CPPS)的概念。事实上,依托计算机科学、信息与通信技术以及制造科学与技术的最新及可预见的发展,信息物理生产系统(CPPS)可能引发第四次工业革命(“工业4.0”)[6]。制造领域的持续转型不可避免地导致了物流行业组织的演进。其目标是通过多个物流参与者的互联互通,实现更好的物流资源共享,从而提高服务的效率和质量绩效。如果要实现“工业4.0”的愿景,大多数企业过程必须变得更加数字化。
一个关键要素是传统供应链向互联、智能且高度高效的供应链生态系统演进[7–9]。随着数字化的发展,供应网络成为一个集成生态系统,对所有参与方完全透明,从原材料和零部件的供应商、这些物资和成品的运输商,到最终要求订单履行的客户均如此。这一演进催生了信息物理物流系统(CPLS)的概念,该系统基于融合不同的科学研究主题,例如全息范式的形式化操作和/或物理互联网概念提供的框架。
本文中,作者基于全息范式,提出将信息物理物流系统概念应用于物理互联网的部署。为此,下一节将概述与该研究问题相关的概念和范式。接着,提出并论证了一种基于全球物流系统控制的等权架构以及多准则、自组织和动态决策的信息物理物流系统模型。然后,介绍了用于验证该方案的验证原型。最后,结论部分总结了全文并提出了未来发展方向。
2 全球物流系统的新背景
信息物理物流系统是将信息物理生产系统应用于物流领域的成果。而信息物理生产系统本身则是在制造环境中实现的信息物理系统。根据[2],信息物理系统集成了使用传感器获取数据并借助执行器作用于物理过程的嵌入式系统。这些系统通过数字网络相互连接,利用全球范围内可用的数据和服务,并受益于多模态的人机界面。因此,信息物理系统源于多技术集成,这种集成早已被称为“机电一体化”,即“机械+电子”。这一术语在研究论文中常被偏重于仅指代其中一种技术,未能充分强调实时嵌入式电子技术为运行系统在感知、处理和行动能力方面带来的新功能。然而,随着具有嵌入式通信能力的运行系统中计算功能的分布化和数字处理的引入,传统的机械与电子框架得以拓展。这使得可以构想出各组件具备足够智能以实现自主能力,从而具备自组织可能性的分布式系统。这一点已在[10]中预见并阐述。
对信息物理系统(CPS)的兴趣激增,首先与其嵌入实时处理能力密切相关,这种能力既可实现与CPS用户之间的强交互,又能全面实时地感知环境,从而实现信息物理系统的智能自动化。这使得开发新型产品成为可能,这些产品能够嵌入功能性特征,赋予其市场吸引力,从而证明其相较于传统产品所增加的成本是合理的。
事实上,新的信息通信技术概念的出现深刻地改变了工业系统研究[11, 12],为一系列过去看似不可能出现的多样化提案提供了机会。[1]的作者因此指出了四个重大挑战,涉及以下问题:
- 如何实现数据与信息分析、挖掘、集成和共享?
- 如何在复杂商业环境中提供情境感知能力?
- 如何提供新的、直观的与企业信息系统交互的方式?
- 如何支持由新的科学与技术进步所引发的专业能力发展?
我们对第二点非常感兴趣,因为它是能够创造价值并推动信息物理物流系统成功的关键。
我们完全相信,在专用信息物理系统应用于生产系统或物流系统的情况下,智能和决策能力的分布式架构带来了诸多优势。
许多研究团队已深入推进了对该范式的研究。[13]的作者展示了法国在智能制造业系统(IMS)方面的各项研究成果。莫诺斯托里等人[14]、莱陶[15]和普若[16]提出了基于多智能体系统和/或全息范式的分布式控制解决方案的全景概述。
许多研究试图捕捉这些概念,超越通过多智能体平台进行的仿真,转而使用诸如无线传感器网络(WSNs)等成熟技术。例如,[17]的作者展示了信息物理系统应用如何利用无线传感器网络收集的物理信息,来连接现实空间与网络空间,并指出了与信息物理系统设计相关的重要研究挑战。[18]的作者提出构建用于制造和厂内物流的信息物理系统,使用无线传感器网络组件,这构成了一个信息物理生产系统的实例。
信息物理生产系统由自主与协作的元素和子系统组成,这些元素和子系统在情境依赖节点中相互连接,覆盖从过程、机器、生产系统到生产和物流网络的所有生产层级[19]。文献[20]强调了信息物理生产系统的三个主要特征:
-
智能
(智能化),即系统中的元素能够从周围环境中获取信息并自主行动。
-
互联性
,即能够建立并利用与系统中其他元素(包括人类)之间的连接,以实现协作,并能够接入互联网上的知识与服务。
-
响应性
,即对内部和外部变化做出及时响应。
信息物理生产系统(CPPS)部分打破了传统自动化金字塔[21]。CPPS与“协作自动化”范式相关,即去中心化和分布式的嵌入式设备与系统之间的可互操作的网络化协作。[22]的作者提出了非常相似的工业CPS概念,并通过评估其难度、优先级和成熟度前景,确定了其部署过程中的27项关键挑战。该分析可推广至信息物理物流系统(CPLS)。
信息物理物流系统(CPLS)的概念首次发表于中国国家级期刊[23]。基于现有物流系统和信息物理系统(CPS)的特点,本文提出了信息物理物流系统的架构和关键技术。信息物理物流系统研究面临的主要挑战,从系统建模、大规模信息获取、优化、控制和标准化等方面进行了讨论。
与此同时,“工业4.0”与物流活动之间的互补性变得显而易见。[24]的作者展示了内部物流系统的实际工业组件(如:高架货架系统、传送带和分拣系统)。这些组件在一个多智能体框架中进行建模和运行,为利用可灵活、模块化调整的信息物理系统组件开发物料搬运设备的发展提供了见解。
信息物理物流系统是物流系统的一种特殊形式,用于描述物流中信息物理系统的边界、元素和连接[25]。在本研究中,信息物理物流系统的定义如下:“信息物理物流系统应被理解为执行物流任务的主要信息物理系统的集合。这些信息物理系统是嵌入式、互联的系统,能够自主地与环境进行作用和交互。特别是,物流任务涉及价值链中的信息和货物流动。信息物理物流系统致力于实现经济、生态和社会目标。”
[26]的作者描述了信息物理系统结合物流模型如何改进生产计划、控制和监控;在[27]中,一个信息物理物流系统在“工业4.0”环境中被开发,并应用于轮胎制造。本研究的主要研究问题是:信息物理物流系统为何以及如何改善制造环境?
信息物理物流系统催生了新经济模型的出现,例如基于数字互联网隐喻的物理互联网[28]:其理念是借鉴信息传输方式,以构想类似的物理对象运输,并通过确保高质量的服务,保证经济效率并促进可持续发展。物理互联网(PI)将推动开放系统的开发,将物理对象连接到全球互联网。这一概念意味着重大的组织变革与演进。信息物理物流系统符合这一发展方向。在[29]中,通过利用物理互联网的概念,提出了一种通用方法,用于确定沿整个产品路径的产品运输物流链,从而定义了信息物理物流系统的基础。需要注意的是,这些基于智能物流实体自组织的方法依赖于信息电子技术来实现,因此它们推动了信息物理物流系统的实施。
3 全息范式在信息物理物流系统中的应用
在[30]社会系统研究的异构体范式中进行了定义。“异构体”这一概念对应于系统中具有唯一身份且可识别的部分,它由从属部分组成,同时本身又是更大整体的一部分。这使得我们可以重新审视开放层次系统理论的概念:任何系统必须被视为由形成垂直树和水平网络的半自主子集构成的多级层次结构。
在全球IMS倡议背景下,1990年,许多研究团队致力于将全息范式应用于工业生产领域。众多合弄制造系统(HMS)提案所产生的少数不变量将进一步凸显,以勾勒出CPLS的合弄建模轮廓。
3.1 信息物理物流系统中的典型交互实体
[16]的作者们对大量HMS进行了盘点。结果表明,这些HMS之间往往差异极大,而它们最基本的共同点在于由三类合弄实体构成的核心:(i)生产系统中被加工的对象或事物,(ii)参与该处理过程的每台设备,以及(iii)规定任务或相关作业特征的每个处理过程。
这三类合弄体根据HMS以及具体的运行模式具有不同的称谓,但最常被引用的模型(如PROSA[31])通常参考{产品、资源、订单}这一集合。该原则在物流活动背景下仍然有效,我们可以将这些合弄实体类型转换到合弄物流系统[29]中。
问题如下:为了到达一个目的地,存在多条路线;每条路线由一系列路段组成。所有这些路段构成了运输网络。在给定的时间段内,每个路段上可能有多个可用的运输资源。连续路段之间的连接在枢纽中完成,并可能在连接时更换运输资源[29]。因此,有必要选择路径上各个路段的全部资源,以确保产品的交付日期,或至少实现最小延迟。
如果该问题看似对应于一个经典优化问题,这类理论解法实际上并不适用,主要原因有以下几点。首先,在PI型全球物流系统规模下,问题规模较大,求解时间较长。此外,每次新的运输任务都会导致问题模型发生变化。因此,必须固定时间段数据集才能获得高效解法。最后,运输任务持续时间较长,且取决于所用运输资源的速度。因此,始终可能存在随机性和扰动,使得初始最优解随时间推移变得效率显著降低。所有这些因素都会抑制系统的响应性,并可能影响既定目标的实现。
因此,我们更倾向于研究自组织解决方案,该方案基于机会主义协作,旨在实现交互中的合弄实体之间特定目标的良好折衷方案。为此,我们将详细阐述针对这三类合弄体的合弄建模愿景及其关联行为。
3.2 物理互联网的产品、资源与订单
产品全息体 (PH)用于建模待运输的对象。与PROSIS[32]中一样,每个被运输的对象都有一个对应的PHi,无论其性质如何。在某些情况下,一个PH可能代表一批产品,前提是这批产品具有相同的目的地并共用同一个包装。这对于小型且低价值的产品尤为重要。除了其固有特性外,PH还将以其尺寸为特征,以便为其运输找到合适的容器,并确保在最终目的地按规定的交付日期完成交付。该异构体表面上看似被动,但在性能评估(例如在个体服务质量方面)中发挥着作用,当出现性能不足时(例如可能超出交付日期),它将起到警示作用。
资源全息体 (RH)对运输工具进行建模。每种运输工具(卡车、船舶、火车等)对应一个RH。每个RHj的目标是最大化其容量;这显然符合物理互联网的目标——减少空载交通。只有在全球资源池化的框架下,通过明确区分运营商与货运代理的概念,并根据各参与方的成本和附加值公平分配收益,才能实现这一目标。该原则使得可用资源得以利用,且唯一关注的是其运营盈利能力。
订单全息体 (OH)是最终管理实际运输执行的主体。事实上,每个OHk由PI容器[33, 34]承载,该PI容器是用于封装物理对象的实物载体。它继承了相关的PHi特性,即交付地点和交付日期。其目标是与其他PI容器协作,组合成符合枢纽标准装卸尺寸的容器。实际上,在物理互联网运作的核心环节,PI容器在运输路段上的聚合与分解能够实现规模经济,并提高每项资源使用的盈利能力。这正是物理互联网所有优势所在。
当关联两个或多个PI容器,在进行封装或建立组合关系期间,所涉及的{OHk}m集合由一个OHm表示。该OHm可以是{OHk}m中的一个,承担代表其他OH的角色。在到达枢纽时,该OHm会检查{OHk}是否继续朝相同方向行进,即它们是否将经由同一路段S运输。如果是,则该OHm为{OHk}寻找运输资源;否则,它请求枢纽启动对该OHm的拆分程序,以便将每个OHk导向其对应的路段。
一旦新的订单自主单元x被重组,每个订单自主单元便启动一个寻找临时运输资源的流程。关于此类问题,已有大量研究工作开展,例如[35–38]。然而,正是枢纽中异构体的行为驱动了流的流动性以及负载的均衡性,而这直接关系到整个物流系统绩效与耐久性的实现,尤其是在物理互联网背景下[28]所特别追求的[39]。
a Hub中自治单元的行为规则
自主单元系统中控制解决方案的出现源于这些异构体之间所管理的交互。在我们的方案中,资源自主单元和订单自主单元的集合为产品自主单元服务,每个单元提供需执行的运输规格的一部分(地点和交付日期)。
封装了一个PH或聚合一组OH的OH将与RH协作制定一个共同解决方案,同时保持各自的目标。RHj不可避免地会在给定路段Sl上,于其出发日期tdep, l, j之前寻求填满其运输能力,而OHk则旨在推进其负责的PHi,使其沿更接近目的地的路径移动,并确保按时交付。
让我们考虑,Wa,b从出发枢纽Ha到目的地枢纽Hb的路线(路径)。该路线是给定的路段序列Sl,使得Wa, b=⋃ n l= 1Sl,其中:
- Sl:从出发枢纽Hla到目的枢纽Hl之间的路段,b;设Sl=[Hla,Hl,b]。
- H1,a= Ha:出发条件。
- Hl,b= Hl+1,a:中间枢纽中的运输连续性条件。
- H n,b= Hb:到达目的地条件。
每个RHj和每个OHk发起征集提案,感兴趣的自主单元对此作出响应。通过多准则决策辅助分析这些响应,以突出最有利条件。
因此,一个RHj针对路段Sl发起一项运输服务报价,其出发日期为tdep,l, j。另一方面,每个OHk会收到来自不同运输服务的报价,这些报价可能适用。这些报价在出发日期、接近最终目的地的程度、相对于交付日期的剩余时间余量、价格、所用运输方式的可持续性,以及组织运输的公司的可靠性与声誉等方面各不相同。随后,OHk进行多准则分析,从而对这些运输报价进行分类。排在首位的报价在其自身需求之间实现了最佳折衷方案。接着,OHk尝试向相关的RHj发送回复。该RHj收到一组响应。如果这组响应所代表的PI容器体积超过了其自身容量,则该RHj将执行多准则分析,以对优先运输请求进行排序。然后,RHj选择前p个能够满足其自身容量的响应,通知相应的OHk它们已被选中,并通知其他OHk请求者其请求已被拒绝。后者随即重新启动针对RH的多准则搜索过程,并将RHj从可选集合中排除。
除了确保全球物流系统正常运行的这些规则外,还可以设想其他规则以提高灵活性和响应性,例如已在[40, 41]中测试过的解决方案。因此,订单自主单元(OH)可以通过可预测地响应资源自主单元(RH)并预先承诺某些报价,来预测其在即将到来的路段中的运输任务。因此,如果OH收到更优来自新的资源自主单元的报价时,它可以释放之前选择的报价。类似地,如果一个资源自主单元急需容量以优先处理紧急运输,它可以查看已接受的报价,选择能够接受新的运输方式的那个。
4 信息物理物流系统建模
上述复杂的机制构成了每个异构体智能的基础。尽管这些机制针对每种类型的异构体(PH、RH和OH)并且针对每个异构体进行了特定的参数化,但其运行原则是共通的。该原则在于:全球物流系统是一个信息物理物流系统,其本身递归地由多个信息物理物流系统组成,直到达到最基本的信息物理物流系统,即最简单的异构体:待运输的产品、基本运输资源(卡车、火车、集装箱运输车)以及PI—集装箱。下文将阐述从全息范式向信息物理物流系统操作化过渡。
4.1 信息物理物流系统中异构体的基本实现
文献认为,一个异构体由物理部分和信息部分(即身体和大脑)组成。在我们的研究中,将其称为M_异构体和I_异构体[32]。从概念性异构体过渡到可操作的信息物理物流系统,需要为物理部分M_异构体配备具备通信能力的嵌入式计算机,以管理由I_异构体支持的数字处理。不同的平台都有可能满足这一要求,用于实现验证原型:无线传感器网络节点、Arduino、树莓派、ESP8266等。
因此,I_异构体可以执行各种所需功能:
-
有限状态机
(finite state machine)——通过根据前述决策机制中的当前阶段特化操作,确保信息物理物流系统的核心运行。
-
通信功能
(communication function)——与其它I_异构体交互,无论其是邻近还是远程,例如通过服务器中继。
-
远程服务调用功能
(remote services’ call function)——例如,能够执行多准则分析的网络服务,或能够查找路线的另一网络服务。
-
本地感知功能
(local perception functions)——针对冷藏I型集装箱的温度测量,通过嵌入式GPS进行位置测量。
这些不同功能需要实时多线程处理。
由于代码相对通用,异构体的递归可以在基本信息物理物流系统中进行管理。例如,聚合异构体集合{OHk}m的OHm中的I_异构体可由其中一个OHk的嵌入式计算机托管,并使用相同的算法运行,但需配置相应的参数。
4.2 状态图
所有这些不同的行为都使用状态图进行形式化建模[42]。图1展示了在资源自主单元的有限状态机中运行的两个状态图,对应于第3.3节中描述的行为:左侧为运输控制,右侧为提案请求管理器。
4.3 订单自主单元使用的多准则决策辅助
信息物理物流系统中的复杂选择通过多准则决策辅助借助提供基于网络分析法(ANP)分析的Web服务(WS)来完成[43]。图1展示了为RHi调用此类网络服务以对最值得关注的PI容器进行分类和选择的示例。图2展示了一个旨在为OH选择最佳路径的ANP结构k,即在多个准则和指标之间达到最佳折衷方案的路径。不同的备选方案Aq代表不同的可能路径;WS_ANP将对其进行分类,而OHk将尝试遵循最佳路线。
4.4 试验平台:中法洲际交换
为了说明上述原则,我们研究了从中国到法国的集装箱交换案例。一方面,我们考虑了三个由中国不同港口(CPi:天津、青岛、上海、宁波、香港、深圳、广州)服务的中国经济和工业区(渤海湾、长江三角洲、珠江三角洲);另一方面,两个法国港口(FP:勒阿弗尔、福斯)共同承担海运交通的接收任务。需要注意的是,海运航线(约45天)与铁路运输(武汉—Lyon:平均15天)存在竞争关系。图3中的地图显示了不同的路线选择。
这项工作正在进行中。我们正在寻找代表不同集装箱流的真实数据。将进行两项对比研究。第一项流将被安排在固定路径上;然后,将引入季节性变化以识别性能指标上的峰值负载和延迟。在第二种情况下,使用相同的指标和相同的请求,我们将观察到流将自动平衡,并且服务质量将得到改善。
5 结论
本文提出了一种基于物理互联网、信息物理物流系统和全息范式的未来全球物流系统的愿景。在该方案中,每个全息实体都是属于更高级别信息物理物流系统的CPLS;一个CPLS是一个已实现的异构体。实际上,每个物理实体都关联有一个嵌入式计算机,以支持其相应的智能。每个信息物理物流系统都属于一个网络,在该网络中基于多准则决策辅助(ANP)产生集体决策。
下一步是设置不同的实验,以突出这一代物流系统的优势。这些实验将凸显静态分配阶段对不确定性的高度脆弱性,以及多准则和动态分配阶段的高行为鲁棒性。决策结构将得到增强,并将收集真实数据。
3535

被折叠的 条评论
为什么被折叠?



