ICLR 2023 | DIFFormer: 扩散过程启发的Transformer

1506a8a19ed0ad029c8bda9f24dda283.gif

©作者 | 机器之心编辑部

来源 | 机器之心

本⽂介绍⼀项近期的研究⼯作,试图建⽴能量约束扩散微分⽅程与神经⽹络架构的联系,从而原创性的提出了物理启发下的 Transformer,称作 DIFFormer。作为⼀种通⽤的可以灵活⾼效的学习样本间隐含依赖关系的编码器架构,DIFFormer 在各类任务上都展现了强大潜⼒。这项工作已被 ICLR 2023 接收,并在⾸轮评审就收到了四位审稿⼈给出的 10/8/8/6 评分(最终均分排名位于前 0.5%)。

d622de1d26b3bad633fd873acfe1f6b8.png

论文题目:

DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion

收录会议:

ICLR 2023

论文链接:

https://arxiv.org/pdf/2301.09474.pdf

代码链接:

https://github.com/qitianwu/DIFFormer

3bfa437407bc13d2946b0c5e1a66e1a0.png

简介

如何得到有效的样本表征是机器学习领域的⼀⼤核⼼基础问题,也是深度学习范式在各类下游任务能发挥作用的重要前提。传统的表征学习⽅法通常假设每个输⼊样本是独⽴的,即分别将每个样本输⼊进 encoder ⽹络得到其在隐空间中的表征,每个样本的前向计算过程互不干扰。然⽽这⼀假设通常与现实物理世界中数据的⽣成过程是违背的:由于显式的物理连接或隐含的交互关系,每个观测样本之间可能存在相互的依赖

这⼀观察也启发了我们去重新思考⽤于表征计算的 encoder ⽹络设计:是否能设计⼀种新型的 encoder ⽹络能够在前向计算中显式的利⽤样本间的依赖关系(尽管 这些依赖关系是未被观察到的)。在这个⼯作中,我们从两个物理学原理出发,将神经⽹络计算样本表征的前向过程看作给定初始状态的扩散过程,且随着时间的推移(层数加深)系统的整体能量不断下降(见下图)。

253eebc647dca9cfadd114f496f92a45.png

▲ DIFFormer 模型主要思想的示意图:将模型计算样本表征的前向过程看作⼀个扩散过程,随着时间的推移,节点之间存在信号传递,且任意节点对之间信号传递的速率会随着时间适应性的变化,使得系统整体的能量最⼩化。通过扩散过程和能量约束,最终的样本表征能够吸收个体和全局的信息,更有助于下游任务。

通过试图建⽴扩散微分⽅程与神经⽹络架构的联系,我们阐释了能量约束扩散过程与各类信息传递网络(如 MLP/GNN/Transformers)的联系,并为新的信息传递设 计提供了⼀种理论参考。基于此,我们提出了⼀种新型的可扩展 Transformer 模型,称为 DIFFormer(diffusionbased Transformers)。它可以作为⼀种通⽤的 encoder,在前向计算中利⽤样本间隐含的依赖关系。

⼤量实验表明在⼩ / ⼤图节点分类、图⽚ / ⽂本分类、时空预测等多个领域的实验任务上 DIFFormer 都展现了强⼤的应⽤潜⼒。在计算效率上,DIFFormer 只需要 3GB 显存就可以实现⼗万级样本间全联接的信息传递

9b1d1587723d963cb66023349e3af2ed.png

动机与背景

我们⾸先回顾⼀个经典的热⼒学中的热传导过程:假设系统中有c8cfc8e359bb7b1adb3938720aa437ac.png 个节点,每个节点有初始的温度,两两节点之间都存在信号流动,随着时间的推移节点的温度会不断更新。上述物理过程事实上可以类⽐的看作深度神经网络计算样本表征(embedding)的前向过程。

e8d0e1bdeb85a1e3e7e95b14c7bbfe12.png

▲ 将神经⽹络的前向计算过程看作⼀个扩散过程:每个样本视为流形上的固定位置节点,样本的表征为节点的信号,表征的更新视作节点信号的改变,样本间的信息传递看作节点之间的信号流动

具体的,考虑包含 个样本的数据集,用 表示样本 的输入特征,射到一系列隐空间中的表征向量:

7e2ac1bf7157c20136325cfd60486bdb.jpeg

这⾥我们可以把每个样本看作⼀个离散空间中的节点,样本表征看作节点的信号。当模型结构考虑样本交互时(如信息传递),它可以被看作节点之间的信号流动,随着模型层数加深(即时间的推移),样本表征会不断被更新。

68332f086b82d9df23eead15593bcfa1.png

扩散过程的描述

⼀个经典的扩散过程可以由⼀个热传导⽅程(带初始条件的偏微分⽅程)来描述:

25bf08a6596c45fb6096a7eef564e374.png

这⾥的67a43927882eabeb3ce37a33c1c8f22a.png3265c41b362c9f31b7ebec4d62d657a6.png4dc0a214719704e0dc19269024ac4ace.png分别表示梯度 (gradient) 算⼦、散度 (divergence) 算⼦和扩散率 (diffusivity)。对于由 N 个节点组成的离散化空间,以上三个概念的具体定义可以如下表示:

9243e3b30f5fb875901e0145d31a4c45.png

▲ 在离散空间中,梯度算⼦可以看作两两节点的信号差异,散度算子可以看作单个节点流出信号的总和,⽽扩散率(diffusivity)是⼀种对任意两两节点间信号流动速率的度量

由此我们可以写出描述 N 个节点每时每刻状态更新的扩散微分⽅程,它描述了每个状态下系统中每个节点信号的变化等于流向其他节点的信号总和:

41f05a85939b824f7a847eb8a7887006.png

这⾥的扩散率 5e458eb66e5c3aa6f19fc6c271615c4a.png 定义了在当前时刻任意两两节点 53cee78b7e7e2dbb49c07205ce41fc77.png 之间的影响,即信号从节点ea374472cfad969e84f533ab463fe111.jpeg流向2dc4979d55edacc2c5b80f6a98708c70.jpeg的速率的⼀种度量。

由扩散方程导出的信息传递

我们进⼀步使⽤数值有限差分(具体的这⾥使⽤显式欧拉法)将上述的微分⽅程展开成迭代更新的形式,引⼊⼀个步⻓1aad8cb90de1cc5dad1463ece2a40ab9.png对连续时间进⾏离散化(再经过⽅程左右重新整理):

aa66d4d686d44a93d707c2abb997f12c.png

这⾥的第⼀项系数可以被视作⼀个常数(如果假设b608d30e448d7be0f9491b54385f4617.png是经过沿⾏归⼀化的),于是上式就可以视为⼀个对其他样本表征的信息聚合(第⼆项)再加上⼀个对上⼀层⾃身表征的 residual 连接(第⼀项)。这⾥的扩散率a7792013fedea8aa600c39a103f8b867.png是⼀个fe1ac5ad7bb4fd49f1f99af3f3f2e909.png的矩阵,我们可以对其进⾏不同的假设,就可以得到不同模型的层间更新公式:

  • 如果0a98b08b6a4215817d9bd93c58039c3d.png是⼀个951277d5a1b4a4d0391499e0df3b35a7.png的单位矩阵:(1)式中每个样本的表征计算只取决于⾃⼰(与其他样本独⽴),此时给出的是 Multi-Layer Perceptron (MLP) 的更新公式,即每个样本被单独输⼊进 encoder 计算表征;

  • 如果6a70ba38aae2880291063cde74868318.png在固定位置存在⾮零值(如输⼊图中存在连边的位置):(1)式中每个样本的表征更新会依赖于图中相邻的其他节点,此时给出的是 Graph Neural Networks (GNN) 的更新公式,其中59b08f4c062ed1dceceaa130e306f71a.png是传播矩阵(propagation matrix),例如图卷积⽹络(GCN)模型采⽤归⼀化后的邻接矩阵12f8d6174e056666a07c7f206eea9064.png

  • 如果20147a99e6f29c1bf05909e976d1e6a1.png在所有位置都允许有⾮零值,且每层的7edc20102606b8d9b809e0c83eccc29f.png都可以发⽣变化:(1)式中每个样本的表征更新会依赖于其他所有节点,且每次更新两两节点间的影响也会适应性的变化,此时 (1) 式给出的是 Transformer 结构的更新公式,d2b942531b1a31394d55c43a399f4e6c.png表示第935d08efae70ae2859fb4b600e43a6f4.jpeg层的 attention 矩阵。

下图概述了这三种信息传递模式:

ce18583245b6d84b253811adc8054dad.png

我们研究最后⼀种信息传递⽅式,每层更新的样本表征会利⽤上⼀层所有其他样本的表征,在理论上模型的表达能⼒是最强的。但由此产⽣的⼀个问题是:要如何才能确定合适的每层任意两两节点之间的 diffusivity,使得模型能够产⽣理想的样本表征?

刻画⼀致性的能量函数


我们这⾥引⼊⼀个能量函数,来刻画每时每刻由系统中所有节点表征所定义的内在⼀致性,通过能量的最⼩化来引导扩散过程中节点信号的演 变⽅向。具体的,对于样本表征18a020abe38171480fe3b17cd0c28cb9.png,其对应的能量定义为:

9c4e17be807f06d73da4f26fb184773b.png

这⾥的第⼀项约束了每个节点对⾃身当前状态的局部⼀致性,第⼆项了约束了与系统中其他节点的全局⼀致性。其中206c772cc922edd16acfd3c0b3f38585.png是⼀个单调递增的凹函数(当643a31227fafb739e68c7b026c4c26f5.pnga4abeba20de1ad7e45d3c1c5c3ba24a6.png差别较⼤时,2b3c01c5d5b666238643dde4a2d8d52d.png会返回⼀个适中的能量值,即减⼩对差异较⼤的节点对0ff093ca6de1a4baf5a2087b73811d1b.png的“惩罚”,这有助于提升样本表征的 diversity)。理想情况下,当系统的整体能量达到最⼩化,我们可以认为系统中的每⼀个个体都与整体取得了平衡,样本的表征同时吸收了局部和全局的信息。

能量约束的扩散过程


基于此,我们考虑⼀种带能量约束的扩散过程,每⼀步的扩散率5ba534f2b4693b362e7d199564f18e1d.png被定义为⼀个待优化的隐变量,我们希望它给出的每⼀步的节点表征都能够使得系统整体的能量下降。带能量约束的扩散过程可以被形式化的描述为:

e0e839373c26bbfa985a45e3daf62488.png

虽然直接求解7de31f2a44469d923085aee2713e7bc2.png⾮常复杂(因为他耦合了每⼀步能量下降的约束),不过本⽂通过理论分析建⽴了扩散⽅程数值迭代与能量优化梯度更新的等价性,从⽽得到了每⼀步扩散率的最优闭式解。

定理

对于任意的由 (2) 式所定义的能量函数,存在步⻓2d7b87750aac05c0c2fea63478fecbb3.png和相应的扩散率估计

163d7a2f64890909aa75c8b6ebda74e9.png

使得由 (1) 式定义的扩散⽅程数值迭代保证每⼀步的能量下降,即71dc8959e3a0d5243c2f7bd248d036bb.jpeg

基于这⼀理论结果,我们进⽽提出了扩散过程诱导下的 Transformer 结构,即 DIFFormer,它的每⼀层更新公式表示为:

c408aca51f55a94a37a850ec45f29025.png

这⾥的c8c88144ed8a616b793f20a9b8ed9d8e.png表示衡量481118d322dbb2ef5042ec2a0e860bbe.pnga7e97a0eeaf87509755d3a1d0a7f0815.png相似性的函数,在具体设计时具有很⼤的灵活性。下⾯我们提出两种具体设计,分别称相应的模型结构为 DIFFormer-s 和 DIFFormer-a。

  • DIFFormer-s:采⽤简单的 dot-product 来衡量相似性,作为 attention function(这⾥使⽤ L2 normalization 将输⼊向量限制在 [-1,1] 之间从⽽保证得到的注意⼒权重⾮负):

b0602c587b3c8925cb1d96cd40ffd6b4.png

  • DIFFormer-a:在计算相似度时引⼊⾮线性,从⽽提升模型学习复杂结构的表达能⼒:

d4862814ffedc1853aac53fcee1aa483.png

当我们考虑每层两两节点之间的全局 attention,⼀个潜在的问题是 all-pair attention 带来的e914937a6bf8a8dac4ce7f1355b7c907.png平⽅复杂度。庆幸的是,这⾥ DIFFormer-s 的 attention 定义可以保证每⼀层更新8765ecfccf5153f2e49b4a60cf33ddc8.png个样本表征的计算复杂度在550656515b8da10012331a0b43017576.png之内,这⾮常有利于提升模型的时空效率(特别是空间效率,当需要扩展到包含⼤量样本的数据集时)。

为什么能实现22d95f4645e7119290f70420a13a30d7.png复杂度呢


我们可以把8d7442a320263af075c30e5e53bec7dc.png代⼊更新单个样本的聚合公式,然后通过矩阵乘法结合律交换矩阵运算的顺序(这⾥假设32ba016f3da850ccd1e75d7dee0fd818.png):

ed8c5647abdaee6009e62142eb7b50ad.png

在上式左边的式⼦中,计算⼀次需要9f1b44ce39402d55ec365e2044155da6.png复杂度,⽽⼜因为这是对单个样本的更新公式,因此更新6bfe7c2c488e9089d7a8b02d70b7e1d5.png个不同的样本需要的复杂度是。但在右边的式⼦中,分⼦和分⺟的两个求和项对于所有样本是共享的,也就是说在实际计算中只需要8df0191a69173927d5860504dd095942.png算⼀次,⽽后对每个样本的更新只需要effc0fa32d5b55e6157ace80ce4f5bc8.png,因此更新b5a28096052247e1e78fe71eeeedbaa4.png个样本的总复杂度是e578cf48673e5555bffe7a183d792e74.png

不过对于 DIFFormer-a 的 attention 设计,则⽆法保证d8a5919dbe775c9d9343d2be3d8dfb95.png的计算复杂度,因为⾮线性的引⼊导致了⽆法交换矩阵运输的次序。下图总结了两个模型在具体实现(采⽤矩阵乘法更新⼀层所有样本的表征)中的运算过程。

8a0eea979b9162a1cddc2334c837c8e8.png

▲ 两种模型 DIFFormer-s 和 DIFFormer-a 每层更新的运算过程(矩阵形式),红⾊标注的矩阵乘法操作是计算瓶颈。DIFFormer-s 的优势在于可以实现对样本数量 N 的线性复杂度,有利于模型扩展到⼤规模数据集

模型扩展


更进⼀步的,我们可以引⼊更多设计来提升模型的适⽤性和灵活度。上述的模型主要考虑了样本间的 all-pair attention。对于输⼊数据本身就含有样本间图结构的情况,我们可以加⼊现有图神经⽹络(GNN)中常⽤的传播矩阵(propagation matrix)来融合已知的图结构信息,从⽽定义每层的样本表征更新如下

5b4c396cd88091e853544d16ae0e9781.png

⽐如如果采⽤图卷积⽹络(GCN)中的传播矩阵,则这⾥824fb6aae69ac92e75befdbc7688e534.pngf246f7e9a5e81f54c3a6d4fe31dc366f.png表示输⼊图,d8bf18ea7f70c003d9c3200f9710ba77.png表示其对应的(对⻆)度矩阵。

类似其他 Transformer ⼀样,在每层更新中我们可以加⼊ residual link,layer normalization,以及⾮线性激活。下图展示了 DIFFormer 的单层更新过程。

ff796eaef68798f6e1edbfa7ca9c9b85.png

▲ DIFFormer 的全局输⼊包含样本输⼊特征 X 以及可能存在的图结构 A(可以省略),通过堆叠 DIFFormer layer 更新计算样本表征。在每层更新时,需要计算⼀个全局 attention(具体的可以使⽤ DIFFormer-s 和 DIFFormer-a 两种实现),如果考虑输⼊图结构则加⼊ GCN Conv

另⼀个值得探讨的问题,是如何处理⼤规模数据集(尤其是包含⼤量样本的数据集,此时考虑全局 all-pair attention ⾮常耗费资源)。在这种情况下我们默认使⽤线性复杂度的 DIFFormer-s 的架构,并且可以在每个训练 epoch 对数据集进⾏ random mini-batch 划分。由于线性复杂度,我们可以使⽤较⼤的 batch size 也能使得模型在单卡上进⾏训练(详⻅实验部分)。

f237870888ed8046cfab6770dde26fb5.png

▲ 对于包含⼤量样本的数据集,我们可以对样本进⾏随机 minibatch 划分,每次只输⼊⼀个 batch 的样本。当输⼊包含图结构时,我们可以只提取 batch 内部样本所组成的⼦图输⼊进⽹络。由于 DIFFormer-s 只需要对 batch size 的线性复杂度,在实际中就可以使⽤较⼤的 batch size,保证充⾜的全局信息。

79097452ec666532c64782f8aa5b7c37.png

实验结果

为了验证 DIFFormer 的有效性和在不同场景下的适⽤性,我们考虑了多个实验场景,包括不同规模图上的节点分类、半监督图⽚ / ⽂本分类和时空预测任务。

图节点分类实验


此时输⼊数据是⼀张图,图中的每个节点是⼀个样本(包含特征和标签),⽬标是利⽤节点特征和图结构来预测节点的标签。我们⾸先考虑⼩规模图 的实验,此时可以将⼀整图输⼊ DIFFormer。相⽐于同类模型例如 GNN,DIFFormer 的优势在于可以不受限于输⼊图,学习未被观测到的连边关系,从⽽更好的捕捉⻓距离依赖和潜在关系。下图展示了与 SOTA ⽅法的对⽐结果。

e526ac008a32e54988b3aeebf9b0d6b2.png

进⼀步的我们考虑在⼤规模图上的实验。此时由于图的规模过⼤,⽆法将⼀整图直接输⼊模型(否则将造成 GPU 过载),我们使⽤ mini-batch 训练。

具体的,在每个 epoch,随机的将所有节点分为相同⼤⼩的 mini-batch。每次只将⼀个 mini-batch 的节点输⼊进⽹络;⽽对于输⼊图,只使⽤包含在这个 mini-batch 内部的节点所组成的⼦图输⼊进⽹络;每次迭代过程中,DIFFormer 也只会在 mini-batch 内部的节点之间学习 all-pair attention。这样做就能⼤⼤减⼩空间消耗。

⼜因为 DIFFormer-s 的计算复杂度关于 batch size 是线性的,这就允许我们使⽤很⼤的 batch size 进⾏训练。下图显示了在 ogbn-proteins 和 pokec 两个⼤图数据集上的测试性能,其中对于 proteins/pokec 我们分别使⽤了 10K/100K 的 batch size。此外,下图的表格也展示了 batch size 对模型性能的影响,可以看到,当使⽤较⼤ batch size 时,模型性能是⾮常稳定的。

c853019189ae25396ffd55f17b0dc661.png

图⽚ / ⽂本分类实验


第⼆个场景我们考虑⼀般的分类问题,输⼊是⼀些独⽴的样本(如图⽚、⽂本),样本间没有已观测到的依赖关系。此时尽管没有输⼊图结构, DIFFormer 仍然可以学习隐含在数据中的样本依赖关系。对于对⽐⽅法 GCN/GAT,由于依赖于输⼊图,我们这⾥使⽤ K 近邻⼈⼯构造⼀个样本间的图结构。

9c6f3cb93f6ffd54f74cf01679a591a4.png

时空预测


进⼀步的,我们考虑时空预测任务,此时模型需要根据历史的观测图⽚段(包含上⼀时刻节点标签和图结构)来预测下⼀时刻的节点标签。这⾥我们横向对⽐ 了 DIFFormer-s/DIFFormer-a 在使⽤输⼊图和不使⽤输⼊图(w/o g)时的性能,发现在不少情况下不使⽤输⼊图模型反⽽能给出的较⾼预测精度。这也说明了在这类任务中,给定的观测图结构可能是不可靠的,⽽ DIFFormer 则可以通过从数据中学习依赖关系得到更有⽤的结构信息。

bb98e296d3bbd5fd608a5afcd397eecb.png

986705d2ba63c34faefbcc0d32967ef1.png

扩散过程下的统⼀视⻆

从能量约束的扩散过程出发,我们也可以将其他信息传递模型如 MLP/GCN/GAT 看作 DIFFormer 的特殊形式,从⽽给出统⼀的形式化定义。下图概括了⼏种⽅法对应的能量函数和扩散率。

相⽐之下,从扩散过程来看, DIFFormer 会考虑任意两两节点之间的信号流动且流动的速率会随着时间适应性的变化,⽽ GNN 则是将信号流动限制在⼀部分节点对之间。从能量约束来看,DIFFormer 会同时考虑局部(与⾃身状态)和全局(与其他节点)的⼀致性约束,⽽ MLP/GNN 则是分别侧重于⼆者之⼀, 且 GNN 通常只考虑输⼊图中相邻的节点对约束。

11f262eaa393d57909aa47addd308226.png

d50b23b54256123ea91c64911ada5af7.png

总结与讨论

在这个⼯作中,我们讨论了如何从扩散⽅程出发得到 MLP/GNN/Transformer 的模型更新公式,⽽后提出了⼀个能量约束下的扩散过程,并通过理论分析得到了最优 扩散率的闭式解。基于理论结果,我们提出了 DIFFormer。总的来说,DIFFormer 主要具有以下两点优势:

  • 从设计思想上看:模型结构从能量下降扩散过程的⻆度导出,相⽐于直接的启发式设计更加具有理论依据;

  • 从模型实现上看:在保留了学习每层所有节点全局 all-pair attention 的表达能⼒的同时,DIFFormer-s 只需要7a38aecade0b0e50ac77507b5c12427d.png复杂度来更新6177d62cab5eda3997eeabb5f993157f.png个节点的表征,同时兼容 mini-batch training,可以有效扩展到⼤规模数据集。

DIFFormer 作为⼀个通⽤的 encoder,可以被主要应⽤于以下⼏种场景:

  • 建模含有观测结构的数据,得到节点表征(简⾔之就是使⽤ GNN 的场景):输⼊是⼀张图包含了互连的节点,需要计算图中节点的表征。这是⼀个相对已被⼴泛研究的领域,DIFFormer 的优势在于可以挖掘未被观测的隐式结构(如图中的缺失边、⻓距离依赖等),以及在低标签率的情况下提升精度。

  • 建模不含观测结构但样本间存在隐式依赖的数据(如⼀般的分类 / 回归问题):数据集包含⼀系列独⽴样本0fbd26b2d9f1f6da521b84fbb76ac456.png,样本间的依赖关系未知。此时 DIFFormer 可⽤于学习样本间的隐式依赖关系,利⽤全局信息来计算每个样本的表征。这是⼀个较少被研究的领域,传统⽅法的主要 bottleneck 是在⼩数据集上容易过拟合(由于考虑了样本依赖模型过于复杂),⼤数据集上⼜⽆法有效扩展(学习任意两两样本的关系带来了平⽅复杂度)。DIFFormer 的优势在于简单的模型结构有效避免了过拟合问题,⽽且保证了相对于样本数量的6358080a8a601fecf58b2c5d452eec4e.png复杂度可以有效扩展到⼤规模数据集。 

  • 作为⼀般的即插即⽤式 encoder,解决各式各样的下游任务(如⽣成 / 预测 / 决策问题)。此时 DIFFormer 可以直接⽤于⼤框架下的某个部件,得到输⼊数据的隐空间表征,⽤于下游任务。相⽐于其他 encoder (如 MLP/GNN/Transformer),DIFFormer 的优势在于可以⾼效的计算全局 attention,同时具有⼀定的理论基础(能量下降扩散过程的观点)。

最后欢迎感兴趣的朋友们阅读论⽂和访问我们的 GitHub,共同学习进步~

outside_default.png

参考文献

outside_default.png

[1] Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023. 

[2] Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022. 

[3] Chenxiao Yang et al., Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks, NeurIPS 2022

更多阅读

bc23e489d900ed8928c4cf82099b6afb.png

d4cf9db569f92c2f4e2fe80c82ca6cbd.png

2a400ca01769cc05a6bff24b48ad30b2.png

394124b345f17af8704b63299199fcf5.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

da83e6a869d38c14cdc773a71ab1f933.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

5003da7ed0ffc4de2b302c5f7a67fb19.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值