深入理解图注意力机制(Graph Attention Network)

本文深入解析了图注意力网络(GAT)的工作原理,重点讨论了非对称的注意力权重和LeakyReLU激活函数的作用。GAT通过注意力机制学习节点间的权重,实现对邻居的加权聚合,对噪音邻居具有鲁棒性,并提供了一定的可解释性。文章指出,LeakyReLU的引入避免了节点信息的丢失,确保了节点表示的准确性。同时,GAT与Transformer的对比表明,两者都使用自注意力机制,但GAT在图数据上保留了节点的不变性,而Transformer则需要位置编码来弥补建图过程中的位置信息损失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|纪厚业

学校|北京邮电大学博士生

研究方向|异质图神经网络及其应用

介绍

图神经网络已经成为深度学习领域最炽手可热的方向之一。作为一种代表性的图卷积网络,Graph Attention Network (GAT) 引入了注意力机制来实现更好的邻居聚合。通过学习邻居的权重,GAT 可以实现对邻居的加权聚合。因此,GAT 不仅对于噪音邻居较为鲁棒,注意力机制也赋予了模型一定的可解释性。

下图概述了 Graph Attention Network 主要做的事情。

针对节点 和节点 , GAT 首先学习了他们之间的注意力权重 (如左图所示);然后,基于注意力权重 来对节点 的表示 加权平均,进而得到节点  的表示

深入理解图注意力机制

2.1 非对称的注意权重

首先,介绍下如何学习节点对 之间的注意力值 。很明显,为了计算 ,注意力网络

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值