十分钟读懂Diffusion:图解Diffusion扩散模型

e0038c01c9845d9a267c3e23116b1a96.gif

©作者 | 绝密伏击

单位 | 奇虎360高级算法专家

在之前的文章中,我们曾经介绍过 Diffusion 的具体原理,但是讲的还是比较偏理论,为了让大家快速了解 Diffusion 原理,这篇文章我们通过图解的方式。

AIGC爆火的背后——扩散模型DDPM浅析:

https://zhuanlan.zhihu.com/p/590840909

9262608b6faa49286329ea6c8552725d.png

Diffusion文字生成图片——整体结构

1.1 整个生成过程 

我们知道在使用 Diffusion 的时候,是通过文字生成图片,但是上一篇文章中讲的 Diffusion 模型输入只有随机高斯噪声和 time step。那么文字是怎么转换成 Diffusion 的输入的呢?加入文字后 Diffusion 又有哪些改变?下图可以找到答案。

e5c27b7f17987bbd20ca26265c0afbbe.png

▲ 文字生成图片全过程

实际上 Diffusion 是使用 Text Encoder 生成文字对应的 embedding(Text Encoder 使用 CLIP 模型),然后和随机噪声 embedding,time step embedding 一起作为 Diffusion 的输入,最后生成理想的图片。我们看一下完整的图:

b209ac9ca8a905b1eaa457da2e6d17d9.png

▲ token embedding、随机噪声embedding、time embedding一起输入diffusion

上图我们看到了 Diffusion 的输入为 token embedding 和随机 embedding,time embedding 没有画出来。中间的 Image Information Creator 是由多个 UNet 模型组成,更详细的图如下:

5d4c4654451bea3e98d41c27b5c0c861.png

▲ 更详细的结构

可以看到中间的 Image Information Creator 是由多个 UNet 组合而成的,关于 UNet 的结构我们放在后面来讲。现在我们了解了加入文字 embedding 后 Diffusion 的结构,那么文字的 embedding 是如何生成的?接下来我们介绍下如何使用 CLIP 模型生成文字 embedding。 

1.2 使用CLIP模型生成输入文字embedding 

CLIP 在图像及其描述的数据集上进行训练。想象一个看起来像这样的数据集,包含 4 亿张图片及其说明:

c63a954bcf28eb328727669aab11b12e.png

▲ 图像及其文字说明

实际上 CLIP 是根据从网络上抓取的图像及其文字说明进行训练的。CLIP 是图像编码器和文本编码器的组合,它的训练过程可以简化为给图片加上文字说明。首先分别使用图像和文本编码器对它们进行编码。

b2df259cca623ef840cb5a9ca11c30ea.png

然后使用余弦相似度刻画是否匹配。最开始训练时,相似度会很低。

d51d2c1460c708c29fe722a352885fb0.png

然后计算 loss,更新模型参数,得到新的图片 embedding 和文字 embedding。

7a361e605f3155251f67f90e5f922e1f.png

通过在训练集上训练模型,最终得到文字的 embedding 和图片的 embedding。有关 CLIP 模型的细节,可以参考对应的论文:

https://arxiv.org/pdf/2103.00020.pdf

1.3 UNet网络中如何使用文字embedding

前面已经介绍了如何生成输入文字 embedding,那么 UNet 网络又是如何使用的?实际上是在 UNet 的每个 ResNet 之间添加一个 Attention,而 Attention 一端的输入便是文字 embedding。如下图所示。

2c1dfc5eb65eccee6446fcbb40a99a05.png

更详细的图如下:

68332f56619d231d27322d010be866ce.png

b25928bd2b94a8ae87b2c3d00b4448ce.png

扩散模型Diffusion

前面介绍了 Diffusion 是如何根据输入文字生成图片的,让大家有个大概的了解,接下来会详细介绍扩散模型 Diffusion 是如何训练的,又是如何生成图片的。 

2.1 扩散模型Duffison的训练过程

6b51e8b2310be9d920353110b8ad5ffd.png

▲ 扩散模型Diffusion

Diffusion 模型的训练可以分为两个部分: 

1. 前向扩散过程(Forward Diffusion Process)→图片中添加噪声;

2. 反向扩散过程(Reverse Diffusion Process)→去除图片中的噪声

2.2 前向扩散过程

7f0306fbecd52cf21ff6d4c67921d2f5.png

前向扩散过程是不断往输入图片中添加高斯噪声。 

2.3 反向扩散过程

284ffebf4b4f1d01795f3a3a967b158b.png

反向扩散过程是将噪声不断还原为原始图片。

2.4 训练过程

1584595aa690821f24faf507748bd2ec.png

在每一轮的训练过程中,包含以下内容: 

1. 每一个训练样本选择一个随机时间步长 t

2. 将 time step t 对应的高斯噪声应用到图片中

3. 将 time step 转化为对应 embedding 

下面是每一轮详细的训练过程:

416dc8709d8e1e3470c7a80aa22fda5e.png

2.5 从高斯噪声中生成原始图片(反向扩散过程)

f19ac85e20cbba5604e6bfa676adb196.png

上图的 Sample a Gaussian 表示生成随机高斯噪声,Iteratively denoise the image 表示反向扩散过程,如何一步步从高斯噪声变成输出图片。可以看到最终生成的 Denoised image 非常清晰。

补充1:UNet模型结构

前面已经介绍了 Diffusion 的整个过程,这里补充以下 UNet 的模型结构,如下图所示。

52dc85a1e9c0fb9dcb037d0a5acf229b.png

这里面 Downsampe、Middle block、Upsample 中都包含了 ResNet 残差网络。

补充2:Diffusion模型的缺点及改进版——Stable Diffusion

前面我们在介绍整个文字生成图片的架构中,图里面用的都是 Stable Diffusion,后面介绍又主要介绍的是 Diffusion。其实 Stable Diffusion 是 Diffusion 的改进版。 

Diffusion 的缺点是在反向扩散过程中需要把完整尺寸的图片输入到 U-Net,这使得当图片尺寸以及 time step t 足够大时,Diffusion 会非常的慢。Stable Diffusion 就是为了解决这一问题而提出的。后面有时间再介绍下 Stable Diffusion 是如何改进的。

补充3:UNet网络同时输入文字embedding

在第 2 节介绍 Diffusion 原理的时候,为了方便,都是没有把输入文字 embedding 加进来,只用了 time embedding 和随机高斯噪声,怎么把文字 embedding 也加进来可以参考前面的 1.3 节。

补充4:DDPM为什么要引入时间步长t

引入时间步长 t 是为了模拟一个随时间逐渐增强的扰动过程。每个时间步长 t 代表一个扰动过程,从初始状态开始,通过多次应用噪声来逐渐改变图像的分布。因此,较小的 t 代表较弱的噪声扰动,而较大的 t 代表更强的噪声扰动。 

这里还有一个原因,DDPM 中的 UNet 都是共享参数的,那如何根据不同的输入生成不同的输出,最后从一个完全的一个随机噪声变成一个有意义的图片,这还是一个非常难的问题。我们希望这个 UNet 模型在刚开始的反向过程之中,它可以先生成一些物体的大体轮廓,随着扩散模型一点一点往前走,然后到最后快生成逼真图像的时候,这时候希望它学习到高频的一些特征信息。由于 UNet 都是共享参数,这时候就需要 time embedding 去提醒这个模型,我们现在走到哪一步了,现在输出是想要粗糙一点的,还是细致一点的。 

所以加入时间步长 t 对生成和采样过程都有帮助。

补充5:为什么训练过程中每一次引入的是随机时间步长 t

我们知道模型在训练过程中 loss 会逐渐降低,越到后面 loss 的变化幅度越小。如果时间步长 是递增的,那么必然会使得模型过多的关注较早的时间步长(因为早期 loss 大),而忽略了较晚的时间步长信息。

outside_default.png

参考文献

outside_default.png

https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e

http://jalammar.github.io/illustrated-stable-diffusion/

https://pub.towardsai.net/getting-started-with-stable-diffusion-f343639e4931

https://zhuanlan.zhihu.com/p/597924053

https://zhuanlan.zhihu.com/p/590840909?

https://arxiv.org/abs/2103.00020

更多阅读

06627b0b2170726ef90f8129455a5544.png

e5f73831592285b5eb1507906015aa7b.png

785fde065c652bcc125a2eddc4bde5af.png

6bdc56cbd9bcf8c5a1a2d8fea6244957.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

80bd184770b89feb0197b5979a847aa1.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

f6b6a167b2f872f93706b6b722725ed6.jpeg

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值