一口气看8页!旷视打造“点读笔”Fox:图文并茂的文档交互式多模态大模型

7e2561716a374982953442790a744d23.gif

4941ec420fff5b16154dd4f550a097e2.png

最近,旷视打造了一支多模态大模型的“点读笔”-Fox,轻松实现对 8 页文档(中英混合,单栏多栏格式混合的极端场景)的交互式感知理解。

对于信息密集的 PDF 文档,Fox 支持高可控性的细粒度理解,比如在用户感兴趣区域内进行文字识别、段落翻译以及页面内部的图片内容描述等。

“一图胜千言”—— one image token >> one text token。本文中,我们进一步突破了对于文档的视觉感知理解的上限,高密度的信息被真正压缩,LVLM 真正地“看”懂图,才能真正做好、做出能用的文档多模大模型。更多细节请看我们的 paper。

15521fc29b2703d3532b9db430674a98.png

论文题目:

Focus Anywhere for Fine-grained Multi-page Document Understanding

论文地址:

https://arxiv.org/abs/2405.14295

代码地址:

https://github.com/ucaslcl/Fox

项目主页:

https://ucaslcl.github.io/foxhome/


88227ce490a453fe7679dbd80566f46e.png

Fox的效果展示

(1)中英混合、单栏多栏混合的 8 页 PDF 文档,任意区域的 OCR:

9badd02821fa105281a003f67ee14f82.png

(2)下图左侧展示了 8 页文档内跨页的 VQA。右侧展示了双栏中文页面的前景 OCR。

20d1baf9b5dba35d534cf145abf935f4.png

(3)双栏密集英文页面的前景 OCR:

05a8fdfe8a39256351c486cef0f05f50.png

(4)页面内图片描述:Fox 能给出文档内内容关联的回答(young Dual Language Learners)。当然 Fox 还支持 line-level OCR,以及对 RoI 区域的翻译、总结等。

f120b67be6b4cfb681a552cb8c9a0461.png

(5)Fox 可以结合页面内文字,认识到这是一张关于 global seismic hazards 的图。此外,Fox 还支持 RoI 内的 latex 格式转换,例如下面的 table 转 latex。Fox 还支持更加灵活的颜色引导的 RoI 区域 OCR

85f7f743c53e1cf8db6ebfa85b565737.png

(6)对于卡通绘本,也可以哪里不会点哪里:

62dda5bfcfddfe7e250083a2e111a3d1.png

(7)电影海报和自然场景的对话问答,Fox 给出了非常有趣的答案(根据电影海报下面的文字给出了角色来源):

0e5bd3d6f327d6309c3b8d60666c77a8.png

3b303956932183ff738c7ed86115b019.png

方法简介

b50df271fed4bc5c720d78f530dd1f66.png

Fox 的模型结构如上图所示。Fox 支持单页/多页文档图像输入,所有图像的 image token 被统一到一个 sequence中进行多页文档理解。我们设计了基于 point、color、box 的 prompt,来实现在文档页面上聚焦任意位置。我们合成了图文交织的文档数据,来充分催化两个视觉词表,以更好地适用于实际文档应用场景。

此外,为了促进对文档细粒度理解的研究,作者还打造了一个中英双语的 benchmark,已经开源了数据和评测代码,共包含以下 9 种任务:

(1)Page-level OCR

(2)Region-level OCR

(3)Line-level OCR

(4)Color-guided OCR

(5)Region-level translation

(6)Region-level summary

(7)In-document figure caption

(8)Multi-page multi-region OCR

(9)Cross-page VQA

08ae8c91e3a3118537e948b9900a4256.png

总结

我们呼吁更多的研究人员能关注到细粒度的单页/多页文档理解,单页的稀疏的问答任务远远不够。

真正做好多模态大模型,视觉编码器的信息压缩率(token 转化率)是非常重要的,Fox 仅探究了文档这一类应用方向。希望对大家的研究有所帮助!

更多阅读

0918cb6c98e4c6267a74249d7ccccad9.png

1495ee977a9b74650ad89c89bf188e5c.png

3f5ec5f429e5aedb2216862c50be264a.png

036f698529cab0128c73e84e6b82ed95.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

cdf4f7a3fb83666a240fcb674b2a1afa.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

25815aba4897c23049d02be0dd56c556.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值