©作者 | 机器之心编辑部
来源 | 机器之心
过去十年间,基于随机梯度下降(SGD)的深度学习模型在许多领域都取得了极大的成功。与此同时各式各样的 SGD 替代品也如雨后春笋般涌现。在这些众多替代品中,Adam 及其变种最受追捧。无论是 SGD,还是 Adam,亦或是其他优化器,最核心的超参数非 Learning rate 莫属。因此如何调整好 Leanring rate 是炼丹师们从一开始就必学的技能。
从直觉上讲,影响 Learning rate 取值的重要因素是 Batch size。不知你在学习炼丹术时,是否遇到或者思考过入如下问题:
我的 Batch size 增加一倍,Learning rate 该怎么调整?
网上有说 Batch size 和 Learning rate 是线性放缩,也有说是平方根放缩,到底该按照哪个调整?
为什么我按照网上说的经验关系调整之后效果反而变差了?
针对上述问题,腾讯混元联合北京大学基于现有科研基础和实际业务需求,在进行了大量理论分析和实验验证后发布了关于 Batch size 和 Learning rate 放缩关系的调参指南:
论文标题:
Surge Phenomenon in Optimal Learning Rate and Batch Size Scaling
论文链接:
https://arxiv.org/pdf/2405.14578
1. 当使用 SGD 风格的优化器时,应当采用 OpenAI 2018 年给出的结论(https://arxiv.org/pdf/1812.06162):
2. 但是当使用 Adam 风格的优化器时,需要按照如下放缩规律:
其中和 B 分别代表 Learning rate 和 Batch size,而
与 OpenAI 2020 年 Scaling law 论文(https://arxiv.org/pdf/2001.08361)中的
对应。从上面结论不难发现,当
时,社区中广为流传的线性放缩和平方根放缩在一定范围内都是正确的,并且分别对应使用 SGD 风格和 Adam 风格优化器的情况。
居然要降低学习率?
如果仔细观察 Adam 风格优化器放缩规律的表达式子会发现,当 Batch size 超过后,随着 Batch size 增加最优的 Learning rate 反而是下降的!这样的结论似乎有点反常,但是仔细思考之后又觉得是合理的。首先我们回顾一下 Adam 的更新形式,梯度的一阶动量除以二阶动量的平方根:
(更详细的讨论参考原文中的附录 A)。与 SGD 直接采用 G 进行参数更新相比,将更快的进入饱和区间,例如,假设 G 的均值是正实数,随着 Batch size 增加
估计为正数时,再增加估计的准确度对
的结果也毫无影响了。因此当 Batch size 超过
时,增加的信息不足以抵消
带来的噪声影响,从而导致此次的更新不再那么确信,以至于需要降低学习率。
观察到的下降区间
为了检验理论的正确性,需要从实验中观察到最优学习率的 “下降区间”。既然从上一节的分析中发现,使用 Adam 优化器时 Batch size 超过就会导致最优学习率下降,那么只要确定出
取值,然后在通过网格搜索打点观察就可以了。虽然从形式上
计算很困难,但是幸运的是基于 OpenAI 关算于训练时间和样本效率的定量结论中我们可以估算出
的取值(更详细的讨论参考原文中的附录 G)。
上面展示了 CNN 在 FashionMNIST 上的学习率 “下降区间”。左图为通过 OpenAI 定量公式估算的(左图直线斜率的负数,右图红色竖直虚线),右图中黄色五角星代表不同 Batch size 下的最优 Learning rate 取值,青色实线为我们的理论预估曲线。
以及 Resnet18 在 TinyImagenet,和 DistilGPT2 在 Eli5Category 上也观察到了类似现象。
浪涌现象
前面我们从理论和实验上都发现了,在使用 Adam 风格优化器时最优学习率曲线就像一朵 “浪花” 一样随着 Batch size 增加会先升高后下降。同时结合 OpenAI scaling law 的结论,随着训练进行会逐渐变大。我们理论预测并实验证明了随着训练进行 “浪花” 逐渐向着大 Batch size 方向涌动:
理论发现
前面讨论过 Adam 风格的优化器在进行参数更新时采用类似的形式。虽然此形式看起来很简单,但是由于推导过程涉及到对更新量均值和方差的考量,所以我们在处理的时候做了一个假设和一个近似:
1. 假设每个样本的参数 i 的梯度服从均值为,方差为
的高斯分布
2. 通过 sigmoid-style 函数对高斯误差函数进行数值近似
当时,完整的 Scaling law 形式近似为:
其中:
H 为海森矩阵。
当时:
表明,Batch size 无限大时最优学习率趋于一个饱和值。
应用
我们在腾讯 Angel 大模型训练框架中集成了上述理论成果,并在腾讯混元大模型训练任务中对理论进行进一步验证,未来将服务于各种大模型训练场景。
感谢阅读,更多详细内容,请参考原文。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
·
·
·