【LeetCode】004. Median of Two Sorted Arrays

在LeetCode中,题号004的'两排序数组的中位数'被评为困难级别。经过多次尝试,终于获得通过,但运行效率仅为229ms,位于22.3%的解决方案之中。该问题涉及到多个边界条件的处理,代码中可能存在优化空间,特别是针对JavaScript数组边界的处理,与最佳实践相比存在明显冗余。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这题在LeetCode上标记的是Hard,也确实提交了好几次才 AC 的。效率也不高,最终成绩为:229ms , 22.3%。有很多边界条件需要考虑,细节问题应该也可以优化,只是没想到beats 这么低。
立下一个 flag,好好考虑JS的数组边界问题,跟第一JS相比,代码冗余太多

var findMedianSortedArrays = function(nums1, nums2) {
    var iMax = nums1.length;
    var jMax = nums2.length;
    var k = iMax + jMax;
    var mMax = Math.floor(k/2)+1;
   var INF = 10000;
    var mMax = Math.floor(k/2)+1;
    var min2 = min1 = (nums2[0]||INF) > (nums1[0]||INF)? (nums1[0]||INF) : (nums2[0]||INF);
    if( !(nums1.length) ){
        return k%2 ?  nums2[ mMax -1 ] : (nums2[mMax - 1] + nums2[mMax - 2])/2;
    }
    if( !(nums2.length) ){
        return k%2 ?  nums1[ mMax -1 ] : (nums1[mMax - 1] + nums1[mMax - 2])/2;
    }
    // k = k%2 ? [(k-1)/2] : [k/2 - 1,k/2];
    for(var i = 0,j = 0, m = 0; m < mMax ; m++ ){   
        min2 = min1;
        if(i == iMax){
            min2 = nums2[mMax - 2 - i] > min2 ? nums2[mMax - 2 - i] : min2 ;
            min1 = nums2[mMax - 1 - i];console.log(min2,min1,i,j);
            break;
        }
        if(j == jMax){
            min2 = nums1[mMax - 2 - j] > min2 ? nums1[mMax - 2 - j] : min2;
            min1 = nums1[mMax - 1 - j];
            break;
        }

        if( nums1[i] > nums2[j] ){
            min1 = nums2[j];
            j++;
        }else{
            min1 = nums1[i];
            i++;
        }   
    }

    return k%2 ?  min1 : (min1+min2)/2;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值