- 数形结合是一种便于分析的手段,可用于表达多个变量间的函数关系.
- 例如利用斜率来表示平均数(构造两个变量和第三个变量的关系)。
- 比较斜率时将除法转换为乘法。
- 通过i和i+1 j-2和j-1 令j-i > 1保证了在不越界的情况下充分剪枝。
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=36267
#include<cstdio>
using namespace std;
const int maxn = 100000 + 5;
int n, L;
char s[maxn];
int sum[maxn], p[maxn];//p存储的是节点,sum存储前缀和。
int compare_average(int x1, int x2, int x3, int x4) {//比较两段的斜率哪个更大,将除法转换成了乘法
return (sum[x2]-sum[x1-1]) * (x4-x3+1) - (sum[x4]-sum[x3-1]) * (x2-x1+1);
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d%s", &n, &L, s+1);
sum[0] = 0;
for(int i = 1; i <= n; i++) sum[i] = sum[i-1] + s[i] - '0';
int ansL = 1, ansR = L;//结果初始化
int i = 0, j = 0;//i从作开始保留最优解,j从右往左进行剪枝。
for (int t = L; t <= n; t++) {//结束的节点
while (j-i > 1 && compare_average(p[j-2], t-L, p[j-1], t-L) >= 0) j--;//当左节点比右节点大,进行剪枝
p[j++] = t-L+1; //向右继续遍历
while (j-i > 1 && compare_average(p[i], t, p[i+1], t) <= 0) i++; // 由j-i > 1,j-2 j-2 i i+1 保证了可以不越界并且充分剪枝
int c = compare_average(p[i], t, ansL, ansR);
if (c > 0 || c == 0 && t - p[i] < ansR - ansL) {//更新最优解
ansL = p[i]; ansR = t;
}
}
printf("%d %d\n", ansL, ansR);
}
return 0;
}