问题描述
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
输入格式
输入包含一个整数n。
输出格式
输出一行,包含一个整数,表示Fn除以10007的余数。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
样例输入
10
样例输出
55
样例输入
22
样例输出
7704
数据规模与约定
1 <= n <= 1,000,000。
题解:
当n极大时候 数据就无法保存,因此本题思路就是使用数组来保存f序列。其中只保存模10007的余数。
举个栗子:
fn=(fn-1+fn-2)%10007 = (fn-1 %10007) + (fn-2%10007)
因为对10007取模运算。所以数据都控制在0~10006。附上源代码(运行通过)
#include<stdio.h>
#include<iostream>
using namespace std;
int a[1000001];
int main()
{
a[1]=1;
a[2]=1;
for(int i=3;i<=1000000;i++)
a[i]=(a[i-1]+a[i-2])%10007;
int n;
while(cin>>n)
cout<<a[n]<<endl;
return 0;
}