用PaddlePaddle进行图像分割

用PaddlePaddle进行图像分割

最近百度的视频课程详细的讲解了图像分割的流程和算法。
本文简要的总结一下:

首先使用百度飞浆的框架进行深度学习的计算是非常方便的,它是一个与 Tensorflow 和 PyTorch 类似的深度学习框架
它的优势在于:
    1.可以使用 nodebook 进行基本代码的开发和调试,这个非常方便的,特别是对于研究人员进行一些初步的尝试和简单的性能评估。
    2.百度提供了免费的GPU算力,这个对于在校学生,和中小企业简直是最大的利好,一个8卡的价值不菲啊,一些中小研究机构都不一定有充足的资金来购买,我觉得这是百度对中国整个AI生态作出的最大贡献。
    3.百度有优秀的教师团队,图像分割汇集了来自各大名校的博士,图像分割课程由百度研究院资深研究员朱老师主讲,他多次在顶会国际比赛中取得Top名次,而且他的讲课风格特别“刚”,基本上前一个小时讲课,然后在课堂上用30分钟手敲代码,实际课程中算法。值得围观。有兴趣的同学可以去看一下,课程地址https://aistudio.baidu.com/aistudio/course/introduce/1767


本次课程主要介绍了图像预处理的数据增广方式:
AutoAugment,RandAugment,CutOutRandErasing,HideAndSeek,GridMask,Mixup,Cutmix
同时,课程也带大家一起实现了,随机缩放,随机区域裁剪,图像金字塔,滑窗,等一些具体的图像变换方法。

百度图像分割主要使用的骨干算法有:
    

ResNet,ModelNet,SEResNeXt,Res2Net,DenseNet,HRNet,GoogleNet,Xception,EfficientNet,RegNet 等,
骨干网络并不是本次课程的重点,只是拿来用而已,本次课程的重点放在分割算法:

其中包括图像分割算法:
    DeeplabV3+ , ICNet ,PSPNet,Unet

语义分割算法:
    GCU,GloRe,GINet
课程对GloRe 的公式,进行了详细的讲述
同时对实例分割 ,全景分割 进行了非常详细的讲解
    
    包括实例分割方法: Madk RCNN, SOLO 
    全景分割方法: UPSNet,Panoptic-DeepLab

总之,这是这次课程全面的对图像分割领域进行了描述和展望,同时也对目前已经实现的算法进行了清晰的讲解,是一次非常棒的学习体验,可以使你在一周内学完校园里一个学期的课程。
 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页