CodeForces 659G Fence Divercity (DP)

解析:设dp[i][j]为考虑前i个Fence,cut的部分包含第i个Fence,第i个Fence处理后的高度为j的方案数。

则首先 1<=j<h[i]

如果j<h[i-1],dp[i][j] = 1+sigma(dp[i-1][k]),  1<=k<=min(h[i-1]-1,h[i]-1);

反之,dp[i][j] = 1;

得到转移方程后显然不能直接用,因为空间和时间都特别大,但是我们注意到,对于每一个i,我们只需要维护3个前缀和就可以完成方程的转移。

设s[i][j] = dp[i][1]+dp[i][2]+...+dp[i][j],

这样一来,需要维护的j 的值有三个,min(h[i-1]-1,h[i]-1),h[i],min(h[i]-1,h[i+1]-1);

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>

using namespace std;

long long mod=1e9+7;
long long dp[1000005][3];

int h[1000005];

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&h[i]);
        }

        h[0]=1;
        h[n+1]=1;
        for(int i=1;i<=n;i++)
        {
            int a=min(h[i]-1,h[i-1]-1);
            int b=h[i];
            int c=min(h[i]-1,h[i+1]-1);

            dp[i][0] = (dp[i-1][2]+1)*a%mod;
            dp[i][1] = (dp[i][0]+b-a-1)%mod;

            if(c>=a)
                dp[i][2] = (dp[i][0]+c-a)%mod;
            else
                dp[i][2] = (dp[i-1][2]+1)*c%mod;

        }

        long long ans=0;
        for(int i=1;i<=n;i++)
        {
            ans=(ans+dp[i][1])%mod;
        }

        ans=(ans+mod)%mod;
        printf("%lld\n",ans);

    }
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页