题意:http://www.spoj.com/problems/COT/en/
题意:给定一棵树,树上每个节点都有一个权值,问两点之间路径上第K大值
思路:树上的第k大值,跟区间第k大有些不同,区间第k大每个值在前一个值的基础上新建一棵树,而树上第k大则是在父亲节点的基础上新建一棵树。查询的时候,答案就是root[v] + root[u] - root[lca(v, u)] - root[fa[lca(v,u)]]上的第k大
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <cmath>
- #include <algorithm>
- using namespace std;
- typedef long long ll;
- const int N = 100010;
- struct edge
- {
- int to, next;
- }g[N*2];
- int n, m, tot;
- int cnt, head[N];
- int len, root[N], lson[N*20], rson[N*20], val[N*20];
- int num, dep[N*2], ver[N*2], fir[N], dp[20][N*2], fat[N];
- bool vis[N];
- int a[N], b[N];
- void add_edge(int v, int u)
- {
- g[cnt].to = u, g[cnt].next = head[v], head[v] = cnt++;
- }
- void build(int l, int r, int &rt)
- {
- rt = ++tot;
- val[rt] = 0;
- if(l == r) return;
- int mid = (l + r) >> 1;
- build(l, mid, lson[rt]);
- build(mid + 1, r, rson[rt]);
- }
- void update(int pre, int &rt, int l, int r, int v)
- {
- rt = ++tot;
- lson[rt] = lson[pre], rson[rt] = rson[pre], val[rt] = val[pre] + 1;
- if(l == r) return;
- int mid = (l + r) >> 1;
- if(v <= mid) update(lson[pre], lson[rt], l, mid, v);
- else update(rson[pre], rson[rt], mid + 1, r, v);
- }
- void dfs(int v, int fa, int d)
- {
- vis[v] = true, ver[++num] = v, dep[num] = d, fir[v] = num, fat[v] = fa;
- update(root[fa], root[v], 1, len, a[v]);//在父节点的基础上新建一棵树
- for(int i = head[v]; i != -1; i = g[i].next)
- {
- int u = g[i].to;
- if(! vis[u])
- {
- dfs(u, v, d + 1);
- ver[++num] = v, dep[num] = d;
- }
- }
- }
- void ST(int n)
- {
- for(int i = 1; i <= n; i++) dp[0][i] = i;
- for(int i = 1; (1<<i) <= n; i++)
- for(int j = 1; j <= n - (1<<i) + 1; j++)
- dp[i][j] = dep[dp[i-1][j]] < dep[dp[i-1][j+(1<<(i-1))]] ? dp[i-1][j] : dp[i-1][j+(1<<(i-1))];
- }
- int RMQ(int l, int r)
- {
- int k = log(r - l + 1) / log(2);
- return dep[dp[k][l]] < dep[dp[k][r-(1<<k)+1]] ? dp[k][l] : dp[k][r-(1<<k)+1];
- }
- int LCA(int v, int u)
- {
- v = fir[v], u = fir[u];
- if(v > u) swap(v, u);
- int res = RMQ(v, u);
- return ver[res];
- }
- int query(int ss, int tt, int lca, int lca_fa, int l, int r, int k)
- {
- if(l == r) return l;
- int mid = (l + r) >> 1;
- int tmp = val[lson[ss]] + val[lson[tt]] - val[lson[lca]] - val[lson[lca_fa]];
- if(k <= tmp) return query(lson[ss], lson[tt], lson[lca], lson[lca_fa], l, mid, k);
- else return query(rson[ss], rson[tt], rson[lca], rson[lca_fa], mid + 1, r, k - tmp);
- }
- int main()
- {
- scanf("%d%d", &n, &m);
- for(int i = 1; i <= n; i++) scanf("%d", &a[i]), b[i] = a[i];
- sort(b+1, b+1+n);
- len = unique(b+1, b+1+n) - b - 1;
- for(int i = 1; i <= n; i++) a[i] = lower_bound(b+1, b+1+len, a[i]) - b;
- cnt = 0;
- memset(head, -1, sizeof head);
- for(int i = 1; i <= n - 1; i++)
- {
- int v, u;
- scanf("%d%d", &v, &u);
- add_edge(v, u), add_edge(u, v);
- }
- tot = 0;
- build(1, len, root[0]);
- num = 0;
- memset(vis, 0, sizeof vis);
- dfs(1, 0, 1);
- ST(2 * n - 1);
- for(int i = 1; i <= m; i++)
- {
- int v, u, k;
- scanf("%d%d%d", &v, &u, &k);
- int lca = LCA(v, u);
- printf("%d\n", b[query(root[v], root[u], root[lca], root[fat[lca]], 1, len , k)]);
- }
- return 0;
- }