SPOJ COT 主席树+LCA(树上第k大)

题意:

题目链接:https://vjudge.net/problem/SPOJ-COT
对于给出的一棵树,给出若干询问,问任意两个节点的路径上第k小的节点的权值是多少?


思路:

主席树的另一种经典问题。
看似与HDU 2665不同,这里是针对树结构,其实思路基本不变。只是在建立主席树的时候,需要根据树的父子关系来构造,也就是节点u的线段树要在u的父亲基础上构建。
另外,在寻找第k大时,需要考虑x到y的路径,也就是在线段树rt[x]+rt[y]-rt[lca(x,y)]-rt[pa[lca(x,y)]]上寻找第k大。


代码:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10;

struct node {
    int ls, rs, sum;
} ns[MAXN * 20];

int ct, rt[MAXN * 20];

void cpy(int& now, int old) {
    now = ++ct;
    ns[now] = ns[old];
}

void build(int& now, int l, int r) {
    now = ++ct;
    ns[now].sum = 0;
    if (l == r) return;
    int m = (l + r) >> 1;
    build(ns[now].ls, l, m);
    build(ns[now].rs, m + 1, r);
}

void update(int& now, int old, int l, int r, int x) {
    cpy(now, old);
    ns[now].sum++;
    if (l == r) return;
    int m = (l + r) >> 1;
    if (x <= m) update(ns[now].ls, ns[old].ls, l, m, x);
    else update(ns[now].rs, ns[old].rs, m + 1, r, x);
}

int query(int s, int t, int lca, int flca, int l, int r, int k) {
    if (l == r) return l;
    int m = (l + r) >> 1;
    //cout << ns[ns[s].ls].sum << " " << ns[ns[t].ls].sum << " " << ns[ns[lca].ls].sum << " " << ns[ns[flca].ls].sum <<endl;
    int cnt = ns[ns[s].ls].sum + ns[ns[t].ls].sum - ns[ns[lca].ls].sum - ns[ns[flca].ls].sum;
    //cout << s << ", " << t << ", " << lca << ", " << flca << ", " << " cnt = " << cnt << ", " << l << ", " << r << ", " << k << endl;
    if (k <= cnt) return query(ns[s].ls, ns[t].ls, ns[lca].ls, ns[flca].ls, l, m, k);
    return query(ns[s].rs, ns[t].rs, ns[lca].rs, ns[flca].rs, m + 1, r, k - cnt);
}

int dfs_cnt, sz;
int pa[MAXN], dp[2 * MAXN][20], fir[2 * MAXN], ver[2 * MAXN], R[2 * MAXN];
int a[MAXN], b[MAXN];
vector <int> tree[MAXN];

void dfs(int u, int fa, int deep) {
    pa[u] = fa;
    fir[u] = ++dfs_cnt;
    ver[dfs_cnt] = u; R[dfs_cnt] = deep;

    update(rt[u], rt[fa], 1, sz, a[u]);

    for (int i = 0; i < (int)tree[u].size(); i++) {
        int v = tree[u][i];
        if (v == fa) continue;
        dfs(v, u, deep + 1);
        ver[++dfs_cnt] = u; R[dfs_cnt] = deep;
    }
}

void ST(int n) {
    for (int i = 1; i <= n; i++) dp[i][0] = i;
    for (int j = 1; (1 << j) <= n; j++) {
        for (int i = 1; i + (1 << j) - 1 <= n; i++) {
            int x = dp[i][j - 1], y = dp[i + (1 << (j - 1))][j - 1];
            dp[i][j] = R[x] < R[y] ? x : y;
        }
    }
}

int RMQ(int l, int r) {
    int k = 0;
    while ((1 << (k + 1)) <= r - l + 1) ++k;
    int x = dp[l][k], y = dp[r - (1 << k) + 1][k];
    return R[x] < R[y] ? x : y;
}

int LCA(int u, int v) {
    int x = fir[u], y = fir[v];
    if (x > y) swap(x, y);
    return ver[RMQ(x, y)];
}

void init(int n) {
    ct = dfs_cnt = 0;
    build(rt[0], 1, sz);
    for (int i = 1; i <= n; i++) tree[i].clear();
}

int main() {
    //freopen("in.txt", "r", stdin);
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    sort (b + 1, b + 1 + n);
    sz = unique(b + 1, b + 1 + n) - b - 1;
    for (int i = 1; i <= n; i++) {
        a[i] = lower_bound(b + 1, b + 1 + sz, a[i]) - b;
    }
    for (int i = 1; i <= n; i++) tree[i].clear();
    for (int i = 1; i < n; i++) {
        int u, v;
        scanf("%d%d", &u, &v);
        tree[u].push_back(v);
        tree[v].push_back(u);
    }
    ct = dfs_cnt = 0;
    build(rt[0], 1, sz);
    dfs(1, 0, 1);
    ST(2 * n - 1);
    /*for (int i = 0; i <= 5 * n; i++) {
            printf("%d, rt = %d, ls = %d, rs = %d, sum = %d\n", i, rt[i], ns[rt[i]].ls, ns[rt[i]].rs, ns[rt[i]].sum);
        }*/

    while (m--) {
        int s, t, k;
        scanf("%d%d%d", &s, &t, &k);
        int lca = LCA(s, t);
        int flca = pa[lca];
        //cout << s << " " << t << " " << lca << " " << flca << endl;
        printf("%d\n", b[query(rt[s], rt[t], rt[lca], rt[flca], 1, sz, k)]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值