【数模整理3】数据分析那些事儿——回归分析

本文深入探讨了回归分析,包括线性回归的最小二乘法、逐步回归、分层回归以及套索回归等方法。此外,还介绍了偏最小二乘法回归和Logistic回归,同时讨论了如何检验回归模型的F检验、R²以及处理多重共线性、自相关性等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析是什么?

回归是一种数据分析方法,研究两个或多个变量之间的关系。不同于上一篇所讲的相关分析,回归分析能确定Y与X间的定量关系表达式(回归方程),因此,它可以

  • 揭示各个X对Y的影响程度大小
  • 帮助建立预测模型

回归分析的方法数不胜数,稍加整理,得到下图:
在这里插入图片描述

工具

  • SPSSAU(我之前用得比较熟,但是它要钱QAQ)
  • SPSSPRO(free!)
  • pycharm

回归

1 线性回归(Linear regression)

线性回归假设目标/因变量/Y特征/自变量/X存在线性关系,即满足一个多元一次方程 y = θ 0 + θ 1 x 1 + . . . θ n x n . y = θ_0+θ_1x_1+...θ_nx_n. y=θ0+θ1x1+...θnxn.因此它将寻找最佳的拟合直线(回归线),从而确定回归方程中的θ.具体方法如下:在这里插入图片描述
补充上SPSSAU官网的总结:
在这里插入图片描述

·

最小二乘法(Least Square Method)

最小二乘法是解决曲线拟合问题最常用的方法,在1806年由马里·勒让德提出,其一般形式是:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值