回归分析是什么?
回归是一种数据分析方法,研究两个或多个变量之间的关系。不同于上一篇所讲的相关分析,回归分析能确定Y与X间的定量关系表达式(回归方程),因此,它可以
- 揭示各个X对Y的影响程度大小
- 帮助建立预测模型
回归分析的方法数不胜数,稍加整理,得到下图:
目录
工具
- SPSSAU(我之前用得比较熟,但是它要钱QAQ)
- SPSSPRO(free!)
- pycharm
回归
1 线性回归(Linear regression)
线性回归假设目标/因变量/Y与特征/自变量/X存在线性关系,即满足一个多元一次方程 y = θ 0 + θ 1 x 1 + . . . θ n x n . y = θ_0+θ_1x_1+...θ_nx_n. y=θ0+θ1x1+...θnxn.因此它将寻找最佳的拟合直线(回归线),从而确定回归方程中的θ.具体方法如下:
补充上SPSSAU官网的总结:
·
最小二乘法(Least Square Method)
最小二乘法是解决曲线拟合问题最常用的方法,在1806年由马里·勒让德提出,其一般形式是: