数据结构 4.双向约瑟夫问题

问题描述

约瑟夫问题是一个经典的问题,我们不妨将这个经典问题进行扩展,变成一个双向的约瑟夫问题。

已知 n 个人(不妨分别以编号 1,2,3,…,n 代表 )围坐在一张圆桌周围,首先从编号为 k 的人从 1 开始顺时针报数,1, 2, 3, …,记下顺时针数到 m 的那个人,同时从编号为 k 的人开始逆时针报数,1, 2, 3, …,数到 m 后,两个人同时出列。然后从出列的下一个人又从 1 开始继续进行双向报数,数到 m 的那两个人同时出列,…;。依此重复下去,直到圆桌周围的人全部出列。直到圆桌周围只剩一个人为止。

如果双向报数报到 m 时落在同一个人身上,那本次出列的只有一个人。

例如:5,1,2。则总共5个人,从1开始顺时针报数,数到2,定位编号2;同时从1开始报数数到2,定位编号5;2和5同时出列。然后继续开始报数,顺时针报数3,4,定位到4;逆时针报数4,3,定位3;4和3同时出列。最后剩余的为编号1。输出为:2-5,4-3,1,。

如果输入:6,2,3。则输出:4-6,2,1-3,5,。其中第2次只输出一个2,表示第二次双向报数时,恰好都落在编号2上,所以只有一个编号出列。

输入

输入:n, k, m

输出

输出:按照出列的顺序依次输出编号。同时出列编号中间用减号"-”连接。

非法的输入输出

a) 输入:n、k、m任一个小于1

输出:n,m,k must bigger than 0.

b)输入:k>n

输出:k should not bigger than n.

例:

输入:9,3,2

输出:4 6 8 1 3 7 2 9 5

样例

输入(1)

1,0,0

输出(1)

n,m,k must bigger than 0.

输入(2)

1,2,1

输出(2)

k should not bigger than n.

输入(3)

5,1,2

输出(3)

2-5,4-3,1,

输入(4)

6,2,3

输出(4)

4-6,2,1-3,5,

代码

#include<stdio.h>     
#include<stdlib.h>     
int main()     
{     
    int n,k,m;     
    scanf("%d,%d,%d",&n,&k,&m);     
    if (n<1||k<1||m<1)     
    {     
        printf("n,m,k must bigger than 0.\n");     
        return 0;     
    }     
    if (k>n)     
    {     
        printf("k should not bigger than n.\n");     
        return 0;     
    }     
    else     
    {     
        struct node     
        {     
            int id;     
            struct node *front;  
            struct node *back;     
        };     
        struct node *head,*p,*q,*tmp;     
        head=(struct node*)malloc(sizeof(struct node));     
        head->id=-1;     
        head->front=head;  
        head->back=head;     
        for (int i=n;i>=1;i--)     
        {     
            tmp=(struct node*)malloc(sizeof(struct node));     
            tmp->back=head->back;     
            head->back=tmp;     
            tmp->id=i;     
            if (tmp->id==k)     
            {     
              p=tmp;     
            }     
        }        
        while(tmp->back!=head)  
        {  
            q=tmp->back;  
            q->front=tmp;  
            tmp=tmp->back;  
        }  
        tmp->back=head->back;  
        q=head->back;  
        q->front=tmp;  
        struct node *p1,*p2;  
        p1=p;  
        p2=p;     
        for(int i=0;i<=n;)     
        {     
            for(int j=1;j<m;j++)     
            {     
               p1=p1->back;  
               p2=p2->front;   
            }     
            if(p1->id==p2->id)  
            {  
                printf("%d",p1->id);  
                i++;  
                if(i==n)  
                {  
                    printf(",\n");  
                    return 0;  
                }  
                else  
                {  
                    printf(",");  
                }  
                p1->front->back=p1->back;  
                p1->back->front=p1->front;  
                p2->front->back=p2->back;  
                p2->back->front=p2->front;  
                p1=p1->back;  
                p2=p2->front;  
            }  
            else  
            {  
                printf("%d-%d",p1->id,p2->id);  
                i++;  
                i++;                  
                if(i==n)  
                {  
                    printf(",\n");  
                    return 0;  
                }  
                else  
                {  
                    printf(",");  
                }  
                p1->front->back=p1->back;  
                p1->back->front=p1->front;  
                p2->front->back=p2->back;  
                p2->back->front=p2->front;  
                p1=p1->back;  
                p2=p2->front;  
            }  
      }        
    }     
  return 0;     
}  
约瑟夫问题是一个经典的问题,我们不妨将这个经典问题进行扩展,变成一个双向约瑟夫问题。   已知n个人(不妨分别以编号1,2,3,…,n 代表 )围坐在一张圆桌周围,首先从编号为 k 的人从1开始顺时针报数,1, 2, 3, ...,记下顺时针数到 m 的那个人,同时从编号为 k 的人开始逆时针报数,1, 2, 3, ...,数到 m 后,两个人同时出列。然后从出列的下一个人又从 1 开始继续进行双向报数,数到m的那两个人同时出列,…;。依此重复下去,直到圆桌周围的人全部出列。直到圆桌周围只剩一个人为止。   如果双向报数报到 m 时落在同一个人身上,那本次出列的只有一个人。   例如:5,1,2。则总共5个人,从1开始顺时针报数,数到2,定位编号2;同时从1开始报数数到2,定位编号5;2和5同时出列。然后继续开始报数,顺时针报数3,4,定位到4;逆时针报数4,3,定位3;4和3同时出列。最后剩余的为编号1。输出为:2-5,4-3,1,。   如果输入:6,2,3。则输出:4-6,2,1-3,5,。其中第2次只输出一个2,表示第二次双向报数时,恰好都落在编号2上,所以只有一个编号出列。 输入 n,k,m 输出 按照出列的顺序依次输出编号。同时出列编号中间用减号“-”连接。 非法输入的对应输出如下 a) 输入:n、k、m任一个为0 输出:n,m,k must bigger than 0. b) 输入:k>n 输出:k should not bigger than n.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值