pandas resample()与asfreq()的区别 resample()按日周月累计方法

本文介绍了在处理时间序列数据时如何使用pandas库的resample()和asfreq()方法进行数据重新取样。这两种方法在向前取样时相似,但resample()侧重数据累计,asfreq()则侧重数据选择,并允许设置填充缺失值的方式。通过resample(),可以方便地按日、周、月等不同频率进行数据聚合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       处理时间序列数据时,经常需要按照新的频率(更高频率、更低频率)对数据进行重新取样。你可以通过 resample() 方法解决这个 问题,或者用更简单的 asfreq() 方法。这两个方法的主要差异在于, resample() 方法是以数据累计(data aggregation )为基础,而 asfreq() 方法是以数据选择(data selection )为基础。
       在进行向前取样(up-sampling)时, resample() asfreq() 的用法大体相同,不过重新取样有许多种配置方式。操作时,两种方法都默认将向前取样作为缺失值处理,也就是说在里面填充 NaN
       与 pd.fillna() 函数类似, asfreq() 有一个method 参数可以设置填充缺失值的方式。
       可以通过重新取样将数据转换成更大的颗粒度,
         比如按日累计:
data.resample('D').sum()
       比如按周累计:
data.resample('W').sum()

       比如按月累计:

data.resample('M').sum()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒笑翻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值