Spark ML中提取Word2Vec

word2vec一般分为CBOW 与Skip-Gram两种模型
Continuous Bag-of-Words,CBOW模型的训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量.
Skip-Gram模型和CBOW的思路是反着来的,即输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量。
word2vec简单来说是一个特征提取过程,以下为提取的实例.

import org.apache.spark.ml.feature.Word2Vec

//先创建一个spark里的dataframe
val DF = spark.createDataFrame(Seq(
	"Good morning".split(" "),
	"Good afternoon".split(" "),
	"Good morning".split(" "),
	).map(arrayOne.apply)
).toDF("text")

val word2Vec = new Word2Vec()
	.setInputCol("text")
	.setOutputCol("result")
	.setVectorSize(3)
	.setMinCount(0)
val model = word2Vec.fit(DF)
val result = model.transform(DF)
result.selet("result").take(3).foreach(println)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值