word2vec一般分为CBOW 与Skip-Gram两种模型
Continuous Bag-of-Words,CBOW模型的训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量.
Skip-Gram模型和CBOW的思路是反着来的,即输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量。
word2vec简单来说是一个特征提取过程,以下为提取的实例.
import org.apache.spark.ml.feature.Word2Vec
//先创建一个spark里的dataframe
val DF = spark.createDataFrame(Seq(
"Good morning".split(" "),
"Good afternoon".split(" "),
"Good morning".split(" "),
).map(arrayOne.apply)
).toDF("text")
val word2Vec = new Word2Vec()
.setInputCol("text")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0)
val model = word2Vec.fit(DF)
val result = model.transform(DF)
result.selet("result").take(3).foreach(println)