NumPy

NumPy数组操作详解:创建、访问与算术运算
本文详细介绍了NumPy库中数组的创建,包括使用numpy.array()函数以及创建对角阵的方法。同时,文章阐述了数组的访问方式,如索引、切片和布尔索引,并探讨了转置和重构操作。此外,还讨论了数组的算术运算,包括基本的加减乘除以及广播机制。通过实例解析,帮助读者深入理解NumPy数组的使用技巧。

特点

数组

特点

  • 同类型元素的集合
  • 每个元素在内存中存储区域大小相同

创建数组

numpy.array(object) 参数object可以是列表或元组。

可以用第二个参数指定数据类型

其他函数创建一维数组

创建对角阵

访问数组

索引访问 

参数可为负

切片访问

一维

二维

行和列都是切片,结果是二位数组;行或列是切片,另一个是数,结果是一维数组



布尔索引

  • 布尔索引必须与要索引的数组形状相同
  • 返回的是原数组的副本,与原数组不共享空间,修改新数组原数组不会改变(切片不是)

转置和重构

数组连接

数组分割

一维数组:

二维数组:

数组的算术运算

数组对象可以使用Python的原生算数运算符 +、-、*、/、//、%、**(幂)

二维数组同

点乘

数组广播

数组与数字或不同形状的数组进行算术运算时会发生广播,遵循以下原则:

  1. 先比较形状再比较维度,最后比较行列数
  2. 若维度不同,低维数组形状左侧填充1,直到维数相同,如:(2,)->(1,2)
  3. 行或列数不同,如果有行列数为1,可进行广播,为1的将被扩展,否则无法运算
汽车与停车位关键点检测数据集 一、基础信息 • 数据集名称:汽车与停车位关键点检测数据集 • 图片数量: 训练集:308张图片 验证集:47张图片 测试集:22张图片 总计:377张实际场景图片 • 训练集:308张图片 • 验证集:47张图片 • 测试集:22张图片 • 总计:377张实际场景图片 • 分类类别: car(汽车):常见交通工具,用于检测车辆位置和形状。 parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • car(汽车):常见交通工具,用于检测车辆位置和形状。 • parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • 标注格式:YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件来源于真实环境,覆盖多种停车场景。 二、适用场景 • 智能停车管理系统开发:用于自动检测停车位占用状态和汽车位置,提升停车场管理效率。 • 自动驾驶与辅助驾驶系统:帮助车辆识别可用停车位并精准定位,支持自动泊车功能。 • 城市交通监控与规划:分析停车位使用模式和汽车分布,优化城市交通资源分配。 • 计算机视觉研究:支持关键点检测、目标定位等任务,推动自动驾驶和智能交通算法创新。 三、数据集优势 • 关键点标注精准:每个标注包含多个关键点坐标,精确描述汽车和停车位的形状与位置,确保模型学习细粒度特征。 • 场景多样性:数据涵盖不同环境和角度,增强模型在复杂场景下的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于集成到主流深度学习框架,方便快速部署和实验。 • 实用价值突出:直接应用于智能交通和自动驾驶领域,为停车管理和车辆导航提供可靠数据支撑。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值