今天没有什么特别的东西可以记载,就思考一下几天前在小学期上学的折半查找吧。起初我并不重视这个查找算法,刷题和竞赛中也不怎么碰到,但是学了之后才发现这个算法很有用,不是它查找的作用,而是它这种折半的思想,就比如说最近刷的cugboj1048木材加工(加强版),由于计算量巨大,我不得不采用折半的方法来求解,即找出数目的极限值,不断折半比较来寻找长度的最大值。
对字符串折半查找代码如下(基本的折半太简单,我只贴有价值的):
int zbcz(string a[],string s,int left,int right)
{
if(left>right) return 0;
int mid=(left+right)/2;
if(strcmp(a[mid].c_str(),s.c_str())<0)
return zbcz(a,s,mid+1,right); //c_str()把string返回为char
else if(strcmp(a[mid].c_str(),s.c_str())>0)
return zbcz(a,s,left,mid-1);
else return 1;
}
下面是木材加工(加强版)原题及代码:
该题ac代码如下(原创,请勿复制粘贴):
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
long long int a[60000],n;
int comp(int i)
{
int j,sum=0;
for(sum=0,j=0;j<n;sum+=a[j]/i,j++);
return sum;
}
int main()
{
long long int sum=60000,i,j,k,mid;
long long int tol=0;
cin>>n>>k;
for(i=0;i<n;tol+=a[i],i++) cin>>a[i];
int left=1,right=tol;
if(k>tol)
{
cout<<0<<endl;
return 0;
}
while(1)
{
mid=(left+right)/2;
if(comp(mid+1)<k&&comp(mid)>=k) break;
else if(comp(mid)<k) right=mid-1;
else left=mid+1;
}
cout<<mid<<endl;
return 0;
}