实训笔记7.25

文章详细介绍了MapReduce的特殊使用场景,包括多文件Join操作和计数器的使用。同时,深入讲解了MapReduce的OutputFormat机制、整体流程和调优策略,特别是针对磁盘IO问题的压缩机制。此外,文章还探讨了YARN框架的基本架构、工作流程、资源调度器种类及其配置,并提出了YARN的Web网站问题及解决方案。
摘要由CSDN通过智能技术生成

7.25笔记

一、MapReduce的特殊使用场景

1.1 通过MapReduce程序实现多文件Join操作

1.1.1 通过在Reduce端实现join操作

核心思路是将多个文件读取之后,以多文件的关联字段为key,剩余为value发送给reduce,reduce通过关联字段将value聚合,随后进行join操作

Reduce端join非常容易出现数据倾斜问题

1.1.2 通过在Map端实现join操作

核心思路将多文件中的这些小文件(几十兆或者几十KB左右)在驱动程序中把数据文件缓存起来,只对大文件数据进行切片处理,在map处理数据时,现在setup方法中对缓存的小文件进行读取缓存(缓存的时候以关联字段为key进行缓存)

1.2 MapReduce中的计数器的使用

计数器在MapReduce中是用来统计分布式计算程序中一些感兴趣数据的一些数值。计数器MR程序运行中已经给我们提供了很多的计数器,如果我们觉得这些计数中没有我们所需要的数据的数值,我们可以自定义计数器去使用。

1.2.1 计数器使用两种方式
  1. 使用普通的字符串

    context,getCounter(String groupName,String counterName).increment(num);

  2. 使用枚举类

    context.getCounter(Enum的对象).increment(num)

1.3 MapReduce实现数据清洗

数据清洗就是我们把原始数据中一些不合法非法,不感兴趣的数据清洗处理掉

因此数据清洗一般只需要map阶段即可,在map阶段只需要对合法的数据进行context,write操作,不合法的数据直接舍弃

二、MapReduce的OutputFormat机制

TextOutputFormat:输出的是纯文本文档数据key-value之间以\t分割的,一个kv使用占用一行

SequenceFileOutputFormat:输出是一个SequenceFile文件格式的数据,SequenceFile文件特殊在文件是一个普通的文件,但是文件中的数据是二进制的并且可以被压缩的数据 文件没有被压缩,只是数据被压缩了,数据压缩还有三种模式:none、record、block

默认情况下一个reduceTask输出一个文件,文件名固定的part-r/m-xxxxx

自定义OutputFormat实现相关数据的写出

三、MapReduce整体流程涉及到一些核心组件

  1. InputFormat组件
    1. 切片机制
    2. 读取kv机制
  2. Mapper组件处理一个切片的数据
  3. Partitioner组件map阶段的输出的数据计算分区使用
  4. WritableComparable组件进行输出数据排序,三次排序
  5. Combiner组件(可选组件)进行map端输出数据的局部合并
  6. Reduce组件处理一个分区的数据,聚合处理
  7. OutputFormat组件输出最终的结果数据

四、MapReduce的调优相关知识点

MapReduce运行中,可能会产生很多影响MR计算效率的一些问题:数据倾斜问题、大量的磁盘IO、小文件过多…

4.1 针对磁盘IO问题,MR程序出现了一种压缩和解压缩机制,可以解决MR程序运行中涉及到大量磁盘IO的问题

压缩和解压缩是MR程序提供的一种,在Map输出或者reduce输出,或者map输入之前,可以通过指定的压缩算法对文件或者中间数据进行压缩,这样的话可以减少磁盘IO的数据量,如果我们在map的中间输出指定了压缩,那么reduce拉取会数据之后,会根据指定的压缩机制对压缩的数据进行解压缩。

压缩机制确实可以提升我们MR程序的运行效率,但是也是有成本的,压缩因为使用专门的算法,算法越复杂,压缩的时候程序的CPU的负载越大。

压缩适用于IO密集的MR程序,计算密集的MR程序不适用

4.1.1 常用的压缩算法的适用场景
  1. gzip

    1. 压缩的文件无法被MapReduce切片
    2. 压缩效率和压缩速度都相对而言比较快,如果一个文件压缩之后在128兆左右的话可以适用这个压缩机制
  2. bzip2

    1. 压缩的文件支持切片的
    2. 压缩效率很高,但是压缩速度非常慢,如果我们MR程序对时间要求不高,但是数据量非常庞大的情况下
  3. lzo

    1. 压缩的文件支持切片,但是如果要支持切片是非常复杂的,MR程序支持适用lzo算法,但是MR程序没有自带这个算法

    2. 压缩效率不高,胜在速度非常快

    3. 使用比较麻烦的,因为Hadoop没有自带这个算法,使用的话得需要下载插件,引入依赖…

  4. snappy

    1. 压缩文件不支持切片
    2. 压缩速度非常快,是所有压缩算法中最快的了,压缩的效率比gzip低
4.1.2 MapReduce程序可以压缩数据的位置
  1. Map的输入采用一些支持切片的压缩机制:bzip2、lzogzip和snappy也可以用,只不过最好保证数据压缩之后在128兆左右
  2. map的输出snappy机制
  3. reduce的输出最好也是支持切片的压缩机制
4.1.3 在MapReduce中开启压缩机制

在MR中使用压缩机制,不需要我们去进行手动的压缩和解压缩,只需要在MR的合适的位置指定我们使用的是何种压缩机制,MR程序会自动的调用设置的压缩和解压缩算法进行自动化操作。

  1. mapper的输入开启压缩

    只需要在Configuration或者core-site.xml文件增加如下一行配置即可:

    配置名:io.compression.codecs   
    配置值:org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.Lz4Codec,org.apache.hadoop.io.compress.SnappyCodec
    只需要把上述配置配置好,MR程序在处理输入文件时,如果输入文件是上述配置的压缩的后缀
    
  2. mapper的输出可以开启压缩

    mapreduce.map.output.compress    true/false
    mapreduce.map.output.compress.codec       org.apache.hadoop.io.compress.GzipCodec
    
  3. reduce的输出可以开启压缩

    FileOutputFormat.setCompressOutput(job,true);//是否开启输出压缩 FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);//reduce输出压缩使用的压缩机制.
    

可以使用如下命令检查Hadoop集群目前本身不需要安装插件就支持的压缩算法

hadoop checknative

五、Hadoop的第三大组成–YARN框架

YARN是一个分布式资源调度系统,专门用来给分布式计算程序提供计算资源的,而且YARN只负责进行资源的提供,不管计算程序的逻辑,因此YARN这个软件非常的成功,因为YARN不关注程序计算逻辑,因此只要是分布式计算程序,只要满足YARN的运行要求,那么就可以在YARN上进行运行,由YARN进行资源调度。spark、flink等等分布式计算程序都可以在YARN上运行。

5.1 YARN的基本架构组成

YARN之所以提供分布式计算资源,主要原因就是因为YARN的设计架构

5.1.1 ResourceManager:YARN集群的管理者

1、负责进行资源的配置

2、负责整个集群的状态

3、接受客户端或者applicationmaster的资源申请

5.1.2 NodeManager

1、负责接受RM给NM分配的task任务(就是资源的打包任务)

2、负责启动Container容器(打包的计算程序所需的运行资源)

5.1.1~5.1.2:YARN启动之后就会有的进程

5.1.3 Container

封装了一组计算资源的容器,包含了计算程序所需的资源,资源的具体的配额都是客户端或者ApplicationMaster去向RM申请

5.1.4 ApplicationMaster

任何一个分布式计算程序如果想在YARN上运行,分布式计算程序必须能启动一个ApplicationMaster进程,比如MR程序在YARN上运行就会启动MRAppcationMaster。这个进程不是由YARN自带的,而是分布式计算程序想在YARN上运行,分布式计算程序必须得有这么一个进程。

YARN的工作核心,YARN之所以不知道分布式计算程序的计算逻辑,还能给分布式计算程序提供资源,全凭借ApplicationMaster的存在,ApplicationMaster是分布式程序运行的核心,监控分布式计算程序有没有运行成功、负责向RM申请分布式程序运行的资源。

5.1.3~5.1.4:当有分布式计算程序在YARN上运行的时候,才会出现这两个进程

5.2 YARN的详细工作流程–运行MapReduce

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ye5VNQhS-1690280574965)(./7.25/9a563b4f928b184013a5ed9db62ea27b8079d59039a6596d7fed9a7b01bfbdab.png)]

六、YARN的资源调度器问题

YARN在进行资源分配的时候,RM需要先将client或者AM申请的资源初始化成为一个task任务,资源的task任务不是直接下发给NM,而是先把task任务给加入到一个RM的调度器当中,由调度器在合适的时机下发任务给NM。

6.1 YARN中一共三种的资源调度器

6.1.1 FIFIO资源调度器

是一种队列调度器,每一个任务加入到调度器中,按照时间的先后依次排列,给NM下发任务的时候,是先来的先分配,后来等待集群资源充足继续分配。 只有一个队列,队列使用的集群中所有的资源

特点: 如果有些任务比较重要,必须排队,只有得到队列中你排到了最前面了才会给你分配

Hadoop1.x版本YARN默认的调度器机制

6.1.2 容量调度器

也是一个队列调度器,但是多个队列并行进行分配,每一个队列具备YARN集群中的部分资源。在同一个时刻,可以下发多个任务

Hadoop2.x和hadoop3.x默认调度器

6.1.3 公平调度器

也是可以具备多个队列,每个队列具备集群中的部分资源,不一样的地方在于每一个队列中的任务不等待,每一个任务都会启动,均匀的享有集群的资源。

6.1.4 修改:yarn-site.xml

yarn.resourcemanager.scheduler.class

org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler

6.2 默认使用的容量调度器,容量调度器可以有多个队列,每一个队列占用集群的部分资源,默认情况下容量调度只有一个队列default,队列占有集群的所有资源,如果配置容量调度器的第二个队列:capacity-scheduler.xml

<property>   
	<name>yarn.scheduler.capacity.root.queues</name>   
    <value>default,queueA</value>    
    <description>      
    The queues at the this level (root is the root queue).    
    </description>  
</property> 

容量调度器有几个队列

<!-- default 队列占用的资源容量百分比 40% --> 
<property>    
	<name>yarn.scheduler.capacity.root.default.capacity</name>    
	<value>40</value>  
	</property>  
	<!-- default 队列占用的最大资源容量百分比 60%-->  
<property>    
	<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>    
	<value>60</value>  
</property>

如果要配置多个队列,保证多个队列的capacity加起来是100,每一个队列的最大占用容量要大于等于配置队列容量

七、YARN的web网站问题

YARN提供一个web网站,yarn,通过这个web网站,可以查看YARN集群的资源信息和队列信息,以及可以查看YARN上运行的分布式计算程序的状态以及运行的日志输出

7.1 存在问题

  1. YARN记录的分布式运行程序,只是本次开启有效,如果YARN关闭重启了,那么以前在YARN上运行的日志全部消失了
  2. YARN记录的分布式运行程序,在网站上看不到详细的日志信息,因此后期维护或者查看MR运行信息就很麻烦了

7.2 解决上述问题的方案

  1. 第一步:配置MapReduce的历史服务器JobHistory,可以帮助YARN记忆以前开启的时候运行的MR程序 历史服务器的配置主要在mapred-site.xml文件中配置,主要配置两项
<property>      
	<name>mapreduce.jobhistory.address</name>      
	<value>single:10020</value> </property> <property>    	<name>mapreduce.jobhistory.webapp.address</name>    
	<value>single:19888</value> 
</property>

如果使用历史服务器,必须启动历史服务器,如果不启动,历史服务器不会记录YARN上运行的分布式计算程序 mr-jobhistory-daemon.sh start historyserver

  1. 第二步:配置YARN聚合MapReduce运行日志信息–可以在YARN的web界面查看MR的详细日志 配置yarn-site.xml文件
<!-- 日志聚集功能启动 --> 
<property>    
	<name>yarn.log-aggregation-enable</name>    
	<value>true</value> </property> 
<!-- 日志保留时间设置7天 --> 
<property>        
	<name>yarn.log-aggregation.retain-seconds</name>        
	<value>604800</value> 
</property> 
<property>       
	<name>yarn.log.server.url</name>       <value>http://single:19888/jobhistory/logs</value>         
</property>

代码示例

package com.sxuek.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

public class WCDriver {
    public static void main(String[] args) throws IOException, URISyntaxException, InterruptedException, ClassNotFoundException {
        //1、准备一个配置文件对象
        Configuration configuration = new Configuration();
        configuration.set("fs.defaultFS","hdfs://192.168.68.101:9000");


        //2、创建一个封装MR程序使用Job对象
        Job job = Job.getInstance(configuration);
        job.setJarByClass(WCDriver.class);

        //指定输入文件路径  输入路径默认是本地的,如果你想要是HDFS上的 那么必须配置fs.defaultFS  指定HDFS的路径
        FileInputFormat.setInputPaths(job,new Path("/wordcount.txt"));

        /**
         * 4、封装Mapper阶段
         */
        job.setMapperClass(WCMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        /**
         * 6、封装Reducer阶段
         */
        job.setReducerClass(WCReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        job.setNumReduceTasks(1);

        /**
         * 7、封装指定的OutputFormat,如果没有指定OutputFormat  默认使用TextOutputFormat
         */
        Path path = new Path("/output");
        FileSystem fs = FileSystem.get(new URI("hdfs://192.168.68.101:9000"), configuration, "root");
        if (fs.exists(path)){
            fs.delete(path,true);
        }
        job.setOutputFormatClass(WCOutputFormat.class);
        FileOutputFormat.setOutputPath(job,path);

        /**
         * 8、提交程序运行
         *    提交的时候先进行切片规划,然后将配置和代码提交给资源调度器
         */
        boolean b = job.waitForCompletion(true);
        System.exit(b?0:1);
    }
}


class WCMapper extends Mapper<LongWritable, Text,Text,LongWritable>{
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");
        for (String word : words) {
             context.write(new Text(word),new LongWritable(1L));
        }
    }
}
 class WCReducer extends Reducer<Text,LongWritable,Text,LongWritable>{
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
        long sum =0l;
        for (LongWritable value : values) {
            sum += value.get();
        }
        context.write(key,new LongWritable(sum));
    }
}

class WCOutputFormat extends FileOutputFormat<Text,LongWritable>{

    @Override
    public RecordWriter<Text, LongWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        return new WCRecordWriter();
    }
}

class WCRecordWriter extends RecordWriter<Text,LongWritable>{
    private Connection connection;
    private PreparedStatement preparedStatement;

    public WCRecordWriter(){
        /**
         * 在无参构造器中先连接上MySQL
         */
        try {
            Class.forName("com.mysql.cj.jdbc.Driver");
            connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/mr?serverTimezone=UTC&useUnicode=true&characterEncoding=UTF-8","root","root");
            String sql = "insert into wordcount(word,count) values(?,?)";
            preparedStatement = connection.prepareStatement(sql);
        } catch (ClassNotFoundException e) {
            throw new RuntimeException(e);
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }
    }

    @Override
    public void write(Text key, LongWritable value) throws IOException, InterruptedException {
        String word = key.toString();
        Long count = value.get();
        try {
            preparedStatement.setString(1,word);
            preparedStatement.setInt(2,count.intValue());
            preparedStatement.executeUpdate();
        } catch (SQLException e) {
            throw new RuntimeException(e);
        }

    }

    @Override
    public void close(TaskAttemptContext context) throws IOException, InterruptedException {
        if (preparedStatement != null){
            try {
                preparedStatement.close();
            } catch (SQLException e) {
                throw new RuntimeException(e);
            }
        }

        if (connection != null){
            try {
                connection.close();
            } catch (SQLException e) {
                throw new RuntimeException(e);
            }
        }

    }
}
package com.sxuek.compress;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

/**
 * 压缩和解压缩其实就是使用IO流的形式对数据读取和写出
 * Hadoop的default压缩算法的使用
 * 165s
 * 96%
 */
public class Demo01 {
    public static void main(String[] args) throws IOException {
        DefaultCodec defaultCodec = ReflectionUtils.newInstance(DefaultCodec.class, new Configuration());
        FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+defaultCodec.getDefaultExtension());
        CompressionOutputStream outputStream = defaultCodec.createOutputStream(fos);
        FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");
        long time = System.currentTimeMillis();
        IOUtils.copyBytes(fis,outputStream,1*1024*1024);
        long time1 = System.currentTimeMillis();
        System.out.println(time1-time);
    }
}

package com.sxuek.compress;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

/**
 * gzip
 * 179s
 * 96%
 */
public class Demo02 {
    public static void main(String[] args) throws IOException {
        GzipCodec gzipCodec = ReflectionUtils.newInstance(GzipCodec.class, new Configuration());
        FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+gzipCodec.getDefaultExtension());
        CompressionOutputStream outputStream = gzipCodec.createOutputStream(fos);
        FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");
        long time = System.currentTimeMillis();
        IOUtils.copyBytes(fis,outputStream,1*1024*1024);
        long time1 = System.currentTimeMillis();
        System.out.println(time1-time);
    }
}

package com.sxuek.compress;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.FileInputStream;
import java.io.FileOutputStream;

/**
 * bzip
 */
public class Demo03 {
    public static void main(String[] args) throws Exception {
        BZip2Codec bZip2Codec = ReflectionUtils.newInstance(BZip2Codec.class, new Configuration());
        FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+bZip2Codec.getDefaultExtension());
        CompressionOutputStream outputStream = bZip2Codec.createOutputStream(fos);
        FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");
        long time = System.currentTimeMillis();
        IOUtils.copyBytes(fis,outputStream,1*1024*1024);
        long time1 = System.currentTimeMillis();
        System.out.println(time1-time);
    }
}

package com.sxuek.compress;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.io.compress.SnappyCodec;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.FileInputStream;
import java.io.FileOutputStream;

/**
 * snappy
 */
public class Demo04 {
    public static void main(String[] args) throws Exception{
        SnappyCodec snappyCodec = ReflectionUtils.newInstance(SnappyCodec.class, new Configuration());
        FileOutputStream fos = new FileOutputStream("f://CentOS-7-x86_64-DVD-1708.iso"+snappyCodec.getDefaultExtension());
        CompressionOutputStream outputStream = snappyCodec.createOutputStream(fos);
        FileInputStream fis = new FileInputStream("f://CentOS-7-x86_64-DVD-1708.iso");
        long time = System.currentTimeMillis();
        IOUtils.copyBytes(fis,outputStream,1*1024*1024);
        long time1 = System.currentTimeMillis();
        System.out.println(time1-time);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cai-4

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值