Pandas 十四:concat实现数据的合并


使用场景:

批量合并相同格式的Excel、给DataFrame添加行、给DataFrame添加列

一句话说明concat语法:

  • 使用某种合并方式(inner/outer)
  • 沿着某个轴向(axis=0/1)
  • 把多个Pandas对象(DataFrame/Series)合并成一个。

concat语法:pandas.concat(objs, axis=0, join=‘outer’, ignore_index=False)

  • objs:一个列表,内容可以是DataFrame或者Series,可以混合
  • axis:默认是0代表按行合并,如果等于1代表按列合并
  • join:合并的时候索引的对齐方式,默认是outer join,也可以是inner join
  • ignore_index:是否忽略掉原来的数据索引

append语法:DataFrame.append(other, ignore_index=False)

append只有按行合并,没有按列合并,相当于concat按行的简写形式

  • other:单个dataframe、series、dict,或者列表
  • ignore_index:是否忽略掉原来的数据索引

参考文档:

pandas.concat的api文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
pandas.concat的教程:https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
pandas.append的api文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html
1

import pandas as pd

import warnings
warnings.filterwarnings('ignore')

一、使用pandas.concat合并数据

2

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3'],
                    'E': ['E0', 'E1', 'E2', 'E3']
                   })
df1

2

A	B	C	D	E
0	A0	B0	C0	D0	E0
1	A1	B1	C1	D1	E1
2	A2	B2	C2	D2	E2
3	A3	B3	C3	D3	E3

3

df2 = pd.DataFrame({ 'A': ['A4', 'A5', 'A6', 'A7'],
                     'B': ['B4', 'B5', 'B6', 'B7'],
                     'C': ['C4', 'C5', 'C6', 'C7'],
                     'D': ['D4', 'D5', 'D6', 'D7'],
                     'F': ['F4', 'F5', 'F6', 'F7']
                   })
df2

3

A	B	C	D	F
0	A4	B4	C4	D4	F4
1	A5	B5	C5	D5	F5
2	A6	B6	C6	D6	F6
3	A7	B7	C7	D7	F7
1、默认的concat,参数为axis=0、join=outer、ignore_index=False

4

pd.concat([df1,df2])

4

A	B	C	D	E	F
0	A0	B0	C0	D0	E0	NaN
1	A1	B1	C1	D1	E1	NaN
2	A2	B2	C2	D2	E2	NaN
3	A3	B3	C3	D3	E3	NaN
0	A4	B4	C4	D4	NaN	F4
1	A5	B5	C5	D5	NaN	F5
2	A6	B6	C6	D6	NaN	F6
3	A7	B7	C7	D7	NaN	F7
2、使用ignore_index=True可以忽略原来的索引

5

pd.concat([df1,df2], ignore_index=True)

5

A	B	C	D	E	F
0	A0	B0	C0	D0	E0	NaN
1	A1	B1	C1	D1	E1	NaN
2	A2	B2	C2	D2	E2	NaN
3	A3	B3	C3	D3	E3	NaN
4	A4	B4	C4	D4	NaN	F4
5	A5	B5	C5	D5	NaN	F5
6	A6	B6	C6	D6	NaN	F6
7	A7	B7	C7	D7	NaN	F7
3、使用join=inner过滤掉不匹配的列

6

pd.concat([df1,df2], ignore_index=True, join="inner")

6

A	B	C	D
0	A0	B0	C0	D0
1	A1	B1	C1	D1
2	A2	B2	C2	D2
3	A3	B3	C3	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	B6	C6	D6
7	A7	B7	C7	D7
4、使用axis=1相当于添加新列

7

df1

7

A	B	C	D	E
0	A0	B0	C0	D0	E0
1	A1	B1	C1	D1	E1
2	A2	B2	C2	D2	E2
3	A3	B3	C3	D3	E3

A:添加一列Series
8

s1 = pd.Series(list(range(4)), name="F")
pd.concat([df1,s1], axis=1)

8

A	B	C	D	E	F
0	A0	B0	C0	D0	E0	0
1	A1	B1	C1	D1	E1	1
2	A2	B2	C2	D2	E2	2
3	A3	B3	C3	D3	E3	3

B:添加多列Series
9

s2 = df1.apply(lambda x:x["A"]+"_GG", axis=1)
No output

10

s2

10

0    A0_GG
1    A1_GG
2    A2_GG
3    A3_GG
dtype: object

11

s2.name="G"
No output

12

pd.concat([df1,s1,s2], axis=1)

12

A	B	C	D	E	F	G
0	A0	B0	C0	D0	E0	0	A0_GG
1	A1	B1	C1	D1	E1	1	A1_GG
2	A2	B2	C2	D2	E2	2	A2_GG
3	A3	B3	C3	D3	E3	3	A3_GG

13

# 列表可以只有Series
pd.concat([s1,s2], axis=1)

13

F	G
0	0	A0_GG
1	1	A1_GG
2	2	A2_GG
3	3	A3_GG

14

# 列表是可以混合顺序的
pd.concat([s1,df1,s2], axis=1)

14

F	A	B	C	D	E	G
0	0	A0	B0	C0	D0	E0	A0_GG
1	1	A1	B1	C1	D1	E1	A1_GG
2	2	A2	B2	C2	D2	E2	A2_GG
3	3	A3	B3	C3	D3	E3	A3_GG

二、使用DataFrame.append按行合并数据

15

df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df1

15

A	B
0	1	2
1	3	4

16

df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df2

16

A	B
0	5	6
1	7	8
1、给1个dataframe添加另一个dataframe

17

df1.append(df2)

17

A	B
0	1	2
1	3	4
0	5	6
1	7	8
2、忽略原来的索引ignore_index=True

18

df1.append(df2, ignore_index=True)

18

A	B
0	1	2
1	3	4
2	5	6
3	7	8
3、可以一行一行的给DataFrame添加数据

19

# 一个空的df
df = pd.DataFrame(columns=['A'])
df

19

A

A:低性能版本
20

for i in range(5):
    # 注意这里每次都在复制
    df = df.append({'A': i}, ignore_index=True)
df

20

A
0	0
1	1
2	2
3	3
4	4

B:性能好的版本
21

# 第一个入参是一个列表,避免了多次复制
pd.concat(
    [pd.DataFrame([i], columns=['A']) for i in range(5)],
    ignore_index=True
)

21

A
0	0
1	1
2	2
3	3
4	4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值