- 博客(631)
- 资源 (5)
- 问答 (1)
- 收藏
- 关注
原创 Install Western Digital Software for Windows.exe西部数据(WD)移动硬盘自带的安装程序
西部数据移动硬盘自带的两个安装程序(Windows版.exe和Mac版.dmg)是官方提供的可选软件,主要用于硬盘管理、加密保护、自动备份和健康检测等功能。普通用户可以直接当U盘使用,无需安装这些软件,甚至可以删除安装文件。如需使用备份或加密功能,可选择安装对应系统的程序,后续也能卸载。这些程序并非病毒,也不是必需安装的。
2026-01-01 14:05:27
268
原创 风电机组故障诊断与状态监测方法的研究局限性整理(背景笔记)
摘要:随着风电规模扩大,SCADA系统采集的海量监测数据对智能运维提出挑战。传统方法依赖人工经验、统计假设或单一信号,存在主观性强、适应性差等问题。振动信号方法受噪声干扰,传统机器学习对非线性数据建模不足。时序建模不足和小样本问题也影响诊断效果。GAN等生成模型虽可缓解样本不足,但依赖原始数据质量。参数优化仍以经验为主。研究表明,现有方法在特征提取、工况适应性和时序建模等方面存在局限,亟需引入深度时序模型、多源融合等新方法提升监测能力。
2025-12-26 08:49:33
812
原创 我的中英翻译统一GPT指令模板(专业三阶段翻译流程备忘)
本文介绍了一套专业的中英互译三阶段工作流程,采用"三角色"分工模式确保翻译质量。翻译专家负责忠实流畅的初稿,资深校对编辑进行语法和用词检查,最后由润色专家提升语言美感。该流程强调根据不同文本类型(文学/科技)采用差异化处理,特别要求英文翻译中少用连字符。适用于论文、技术文档等需要高准确性和自然表达的翻译任务,建议完整执行三阶段以确保风格统一。
2025-12-25 19:50:14
736
原创 多模型统一导出 t-SNE 可视化数据的工程实践(1DCNN / DAN / DNN / DRN / Transformer)
本文提出了一种统一导出t-SNE可视化数据的工程实践方法,用于解决多模型对比分析中的标准化问题。针对1DCNN、DAN、DNN、DRN、Transformer等不同模型,设计了统一的数据导出流程,包括特征层t-SNE(按真实标签)和预测结果t-SNE(按预测标签)两类数据。通过规范化命名和Excel存储格式,解决了文件混乱、特征层含义不统一等问题,便于后续可视化分析和论文作图。文中给出了各模型的具体实现示例,展示了从特征提取到数据导出的完整流程,为深度学习故障识别与特征分析提供了标准化的可视化数据处理方案。
2025-12-25 19:41:50
983
原创 tcolorbox 设置 breakable 后断页颜色失效问题及解决方案
摘要:在使用 tcolorbox 的 breakable 选项时,断页后文字颜色会失效(恢复为默认黑色)。问题根源在于颜色命令不会自动继承到断页后的内部 box。虽然 use color stack 选项可部分解决该问题,但仅适用于 pdflatex。推荐通用解决方案是使用 colupper 和 collower 分别控制断页前后的文字颜色,该方法兼容所有编译引擎(pdflatex/xelatex/lualatex),稳定可靠,特别适合书籍、论文等长文档排版。核心代码示例展示了如何通过 \tcblower
2025-12-25 18:09:53
329
原创 Word 文献引用后如何批量更新域编号?——交叉引用一键解决方法
Word文献引用批量更新域编号技巧 论文修改时,参考文献编号常因交叉引用而混乱。推荐通过「打印预览」一键更新:进入文件→打印界面(无需真打印),Word会自动更新全文所有交叉引用编号。此方法不会影响目录格式,比传统的Ctrl+A+F9更稳妥。可将打印预览功能添加到快速访问工具栏,实现一键更新。特别适合需要反复修改论文的场景,能有效避免手动更新导致的遗漏和错误。
2025-12-20 11:57:15
1493
原创 SCI特刊到底去哪找?我给你挖到了入口!
本文介绍了特刊作为期刊专题征稿栏目的特点,包括审稿快、主题专、引用高等优势,并指出科研人员常因信息分散而难以获取特刊信息。重点解析了在ScienceDirect平台查找特刊征稿的方法,涵盖入口链接、筛选技巧等实用内容,旨在帮助研究者高效定位合适特刊,提升投稿效率。原文链接提供了更详细的操作指南。
2025-12-04 20:02:22
473
原创 latex中强制图的编号,而不是默认的编号,不是自动按照出现顺序生成的编号
摘要:LaTeX中强制设置图编号为Figure 17的两种方法:1) 推荐使用\setcounter{figure}{16}手动调整计数器,下一张图自动编号为17;2) 不推荐直接使用\caption*改写标题,会导致无法正确引用。第一种方法保持编号系统完整性,支持交叉引用。
2025-12-04 10:39:35
189
原创 LaTeX 枚举列表转小黑点项目符号的实现方法
本文介绍在LaTeX中将带编号的枚举列表转换为小黑点项目符号的方法。核心方案是将enumerate环境替换为itemize环境,默认即生成小黑点(•)项目符号,无需额外配置。文中提供基础代码示例,并说明如需自定义符号样式(如空心圆、方块等)可通过enumitem宏包的label参数实现。该方法简单高效,能保持原有文本内容和排版格式不变,适用于各类文档排版需求。
2025-12-01 12:18:07
174
原创 保存路径错误:line 2410, in save fp = builtins.open(filename, “w+b“) FileNotFoundError: [Errno 2] No su
Windows默认路径最大长度:260字符(即MAX_PATH)如果超了,需要特殊设置才能支持更长路径,比如开启(但是很麻烦,不推荐)所以,文件名+文件夹路径加起来,一般控制在240字符以内比较保险观察修改最后结果超长路径导致保存失败把文件名变短成功保存,没有任何报错。
2025-04-27 20:38:00
724
2
原创 深度学习实验中,需要设置验证集吗?
正式科研竞赛论文复现等场景,必须设置验证集,不能仅凭训练集选模型。如果数据特别小(比如医学图像、卫星图像小样本),可以考虑用K折交叉验证代替固定验证集。如果只有训练集和测试集(比如某些挑战赛),可以从训练集再划一部分出来当验证集。
2025-04-27 18:21:16
1016
原创 python绘图:把图中所有的字体(包括坐标轴、图例、注释)统一设置为 Times New Roman(新罗马字体)
把图中所有的字体(包括坐标轴、图例、注释)统一设置为。
2025-04-22 09:47:24
1449
原创 解释图标题的位置:plt.text(0.5, -0.05, “Leaky ReLU 激活函数“)
解释图标题的位置:plt.text(0.5, -0.05, "Leaky ReLU 激活函数")
2025-04-22 09:38:27
205
原创 python中,图正下方的标题的高低位置调整
表示“图宽度的中间位置,图高度的下方偏15%处”,是用于在子图正下方添加标题或注释的常用方式。如果觉得标题太低或太高,可以微调-0.15这个数字,比如-0.1或-0.2。
2025-04-22 09:34:26
349
原创 短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)究竟在干什么?
短时傅里叶变换(Short-Time Fourier Transform,简称 STFT)是一种的方法,是对传统傅里叶变换的一种改进。
2025-04-16 15:17:30
1121
原创 傅里叶变换在干什么?
这个声音中含有100Hz(鼓)、800Hz(小提琴)、3000Hz(口哨),每个成分强度是多少。我们平时看到的信号,比如声音、电压、震动信号,都是随。,这叫“时间域”表示。傅里叶变换就能帮我们把信号“拆解”成一堆不同频率的。它的反变换可以把频率信息再还原回时间域。“这个信号是由哪些频率的振动组成的”。
2025-04-16 15:14:31
1079
原创 时域、频域、时频域的基本概念
时域信号频域信号时频域信号类型表示方式横轴纵轴常用分析方法时域信号波形时间幅值(振幅)原始信号或采样数据频域频谱图频率幅值(能量)傅里叶变换(FT, FFT)时频域频谱图随时间变化时间频率、强度STFT、小波变换如果你正在处理风电故障信号,时域只能看出异常是否存在频域可以分析异常的频率特征,而时频域能进一步告诉你:异常是在什么时候、以什么频率爆发的。
2025-04-16 14:59:25
1072
原创 一维数据使用TSNE,报错py“, line 138, in <module> tsne_result_out = tsne2.fit_transform(logits_np)
logits_np(N, 1),而我却试图用 t-SNE 把它降成 2 维,这在内部 PCA 初始化阶段会失败。
2025-04-15 10:41:29
439
原创 参数 stratify=y 在训练集和测试集划分中的作用!!
是否加stratify说明❌ 不加数据随机打乱,可能某些类别偏斜甚至丢失✅ 加stratify=y保持标签分布一致,适合分类问题,强烈建议使用。
2025-04-15 08:56:38
363
原创 PCA(主成分分析)不是“筛掉”特征,而是“合并”、“压缩”特征。
特征选择是 “在原来的变量中挑出重要的”;PCA是 “把所有变量揉合在一起,提取出几个最能代表数据的信息方向”。
2025-04-14 15:05:53
716
原创 大白话解释:PCA 降维(主成分分析,Principal Component Analysis)
这些 10 个属性里,其实有几个是重复、冗余的。我们可以把它们合并成‘综合指标’,只用 2~3 个就能代表整个数据的大部分信息。就像你拍一张照片时,虽然把三维的世界压缩成二维图像,但我们依然能看清楚物体形状 —— PCA 就干了类似的事情!
2025-04-14 14:59:16
616
原创 通俗的理解:MIC相关系数(最大信息系数,Maximal Information Coefficient)
MIC 就像一个万能探测器,它不关心关系是不是直的,只要你俩之间有“规律”,它就能发现。
2025-04-14 14:11:48
659
原创 通俗地解释一下 Pearson 相关系数
它是一个用来衡量两个变量之间线性关系强弱的指标,你可以把它理解成是“变量之间是否一起涨、一起跌”的一种数学量。Pearson 相关系数就是在告诉我们:两个变量是不是一起涨跌,以及这种一起涨跌的关系有多强。
2025-04-14 14:02:58
621
原创 通俗易懂的方式理解:EMD(经验模态分解)与VMD(变分模态分解)的共同点和不同点
EMD 更像是“经验派、简单直接”;VMD 更像是“数学派、稳定精准”。EMD适合初步探索,VMD更适合对信号质量要求高、应用场景复杂的分析任务。
2025-04-14 11:21:16
1476
原创 理解:变分模态分解(VMD, Variational Mode Decomposition)
VMD 就像一个“频率过滤器”,把一个混合信号按频率拆成几部分,让我们能分别分析它们的特点。振动分析(如机械故障检测)电力系统信号处理生物信号(心电、脑电)分解风电/风速/温度信号预处理。
2025-04-14 11:13:01
703
原创 通俗地解释一下 EMD(经验模态分解,Empirical Mode Decomposition)
EMD 就像把一碗“混在一起的面条”分成不同粗细的面条,方便你逐层分析每种波动。
2025-04-14 11:06:53
994
原创 大概解释一下:极值统计理论(Extreme Value Theory, EVT)
是一门专门研究**“极端事件”**的概率和统计理论,它的目标是对“最大值、最小值”这类罕见但关键事件的行为建模预测。
2025-04-13 21:32:39
2387
原创 解释:指数加权移动平均(EWMA)
特点描述权重指数衰减越旧的数据权重越小实时更新只依赖当前值和上一个 EWMA,适合在线计算响应迅速可控通过α\alphaα控制对突变的响应程度常用于过程监控比如在质量控制图(如 EWMA控制图)中监测变量是否偏离控制线。
2025-04-13 21:09:51
2227
原创 Relief法**是一种非常经典、有效的**特征选择算法
是一种非常经典、有效的,尤其适用于。它能在不依赖模型的前提下,根据样本间的距离和类别差异,判断每个特征对分类任务的“区分能力”。
2025-04-13 18:30:28
1135
原创 什么是“偏态”与“厚尾”?
定义:数据分布在均值的一侧拉长或压缩,呈现不对称结构。正偏(右偏):右侧尾巴较长,如收入、寿命分布;负偏(左偏):左侧尾巴较长。
2025-04-13 16:20:25
1242
原创 变点分组法是一种时序数据处理与分段分析的方法
变点分组法(Change Point Segmentation Method):是一种根据时间序列中统计特征(如均值、方差、分布形态等)发生显著变化的位置,将序列自动划分为若干段的方法。每一段内部的统计特征保持相对一致,段与段之间则存在显著差异。
2025-04-13 15:27:04
541
原创 完美解决:ModuleNotFoundError: No module named ‘minepy‘
遇到的错误表明你的环境中尚未安装minepy这个库。
2025-04-01 10:02:45
915
1
SpringerLink施普林格旗下期刊latex模板下载方法-我已经附上latex模版
2024-03-05
Pycharm配置运行参数设置,这参数怎么设置呢?
2021-07-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅