- 博客(580)
- 资源 (5)
- 问答 (1)
- 收藏
- 关注
原创 解决:scope(“hello“, reuse=reuse): TypeError: __init__() got an unexpected keyword argument ‘reuse‘
报错信息表明代码中被错误地使用了带有reuse参数,而并不支持reuse参数。reuse参数通常用于,但由于使用的是 TensorFlow 2.x,已被移除或需要通过兼容性模式使用。
2024-12-12 20:22:45
230
1
原创 解决:AttributeError: module ‘tensorflow‘ has no attribute ‘variable_scope‘
报错的原因是,在 TensorFlow 2.x 中已经被移除,而它是 TensorFlow 1.x 的一种构建静态图的特性。在 TensorFlow 2.x 中,可以通过或者直接使用函数和 Keras API 来替代。
2024-12-12 20:07:24
590
1
原创 解决:tf.placeholder(“float“, [None, width]) AttributeError: module ‘tensorflow‘ has no attribute ‘plac
这个错误表明正在使用 TensorFlow 2.x,而代码是基于 TensorFlow 1.x 编写的。是 TensorFlow 1.x 中的特性,在 TensorFlow 2.x 中已经被移除,因为即时执行模式(Eager Execution)取代了静态图的机制。
2024-12-12 19:58:28
667
原创 解决:raise XLRDError(FILE_FORMAT_DESCRIPTIONS[file_format]+‘; not supported‘) xlrd.biffh.XLRDError:
这个错误是由于xlrd库不再支持读取.xlsx格式的 Excel 文件。从xlrd1.2.0 版本开始,只支持读取旧的.xls格式。如果尝试读取.xlsx文件,则会遇到此错误。
2024-12-11 20:25:25
435
1
原创 解决:AttributeError: module ‘numpy‘ has no attribute ‘float‘. np.float was a deprecated alias for
这个错误是因为numpy的较新版本中移除了对np.float的支持。在NumPy 1.20中,np.float被弃用并建议改用float或np.float64。错误的根本原因在于代码中调用了。
2024-12-11 10:52:56
1172
原创 解决 ImportError: cannot import name ‘CustomObjectScope‘ from ‘keras.utils‘
这个错误提示表明,程序试图从导入,但在当前的keras版本中,这个函数不可用或已被移除。
2024-12-11 10:50:25
266
原创 完美解决TypeError: Unable to convert function return value to a Python type! The signature was () ->
这是因为TensorFlow需要访问NumPy中的一些内部函数,但由于版本差异,导致它无法正常工作。表明NumPy版本是2.0.2,而TensorFlow是为NumPy 1.x编译的。安装完成后,再次运行程序。在新环境中运行你的程序。
2024-12-08 10:52:02
1805
原创 plt.gca().set_position([0, 0, 1, 1]) 的详细作用与原理,移除了图像边缘的空白,生成无边框、干净图片
可以用来调整当前图表 (axes) 的位置和大小。
2024-11-27 20:26:12
400
原创 ModuleNotFoundError: No module named ‘pywt‘该如何安装呢,如何避免ERROR: Could not find a version that satisfies
pip install pywaveletspip install scikit-image
2024-11-27 14:10:35
1072
原创 研究深度学习的大牛的中文名字,这些你真的该记住啦!
Geoffrey HintonYann LeCunYoshua BengioIan GoodfellowAndrew NgDemis Hassabis
2024-11-21 16:43:30
199
原创 符号有向图(Signed Directed Graph, SDG)的前世今生
符号有向图(Signed Directed Graph, SDG)是一种用于建模和分析系统动态行为的图论工具,尤其在复杂系统、故障诊断和因果关系分析等领域应用广泛。它通过节点表示系统的变量或状态,通过有符号的有向边表示变量之间的因果关系以及关系的正负效应。
2024-11-19 22:01:03
630
原创 压缩感知:高效信号采样与重建的理论与实践
压缩感知(Compressive Sensing,简称CS)是一种信号处理理论,旨在通过较少的采样数据恢复原始信号,特别适用于稀疏信号或可以通过少量信息进行有效表示的信号。传统的信号采样理论基于奈奎斯特定理(Nyquist-Shannon sampling theorem),要求信号的采样频率至少是信号最高频率的两倍,而压缩感知则突破了这一限制,能够在采样数量大大低于传统要求的情况下恢复信号。
2024-11-13 14:13:55
535
原创 使用 pd.ExcelWriter 创建多工作表 Excel 文件的详细教程
可以将多个内容写入一个 Excel 文件中。具体地说,它创建了一个Excel 文件写入器,使得我们可以在一个文件中创建多个工作表(Sheet)。
2024-11-06 14:33:37
877
原创 plt.axhline()的使用方法
是 Matplotlib 用来绘制水平线的函数,方便我们在图中添加基准线或参考线。在残差图中,它可以帮助直观地观察残差的正负波动。
2024-11-06 14:25:03
414
1
原创 Python和MATLAB都可以用来绘制散点图。两者的语法和功能相似,但在实现细节和定制选项上略有差异。以下分别用Python和MATLAB绘制一个散点图,并说明它们的不同点。
Python和MATLAB都可以用来绘制散点图。两者的语法和功能相似,但在实现细节和定制选项上略有差异。以下分别用Python和MATLAB绘制一个散点图,并说明它们的不同点。
2024-10-31 15:19:00
385
原创 Python和MATLAB都可以用于绘制折线图,下面是分别用Python和MATLAB绘制简单折线图的示例。
库调用:Python需要导入matplotlib,MATLAB无需导入额外的库。图例设置:Python使用,MATLAB使用。定制:两者都支持多种定制参数,但Python在配合其他库(如seaborn)时具备更高的灵活性。
2024-10-31 15:16:20
561
原创 解决TabError: inconsistent use of tabs and spaces in indentation
是指在代码中使用了不一致的缩进方式,即在同一文件中混用了Tab和空格来缩进代码行。Python 对代码缩进要求严格,必须在整个代码中统一使用或来缩进,不能混用,否则会导致这种错误。
2024-10-31 11:32:17
664
原创 **LSTM(长短期记忆网络)** 通常**不使用 ReLU 作为其默认的激活函数**。LSTM 通常使用 `sigmoid` 和 `tanh` 作为其门控机制和输出的激活函数。
输入门遗忘门输出门:采用sigmoid函数,用于控制每个门的开闭。细胞状态更新和隐藏状态计算:采用tanh函数,用于将状态值限制在[-1, 1]范围内,稳定状态更新。LSTM 之所以不使用 ReLU,是因为 ReLU 的特性不适合 LSTM 的门控机制,而sigmoid和tanh更适合表达门控的状态和控制信息流动。因此,标准 LSTM 使用sigmoid和tanh作为其激活函数,以确保模型的稳定性和有效性。
2024-10-22 15:50:41
515
原创 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
神经网络架构搜索(NAS, Neural Architecture Search)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工设计更优的架构。NAS的目标是从一个巨大的神经网络架构搜索空间中,找到能够在特定数据集和任务上表现最优的网络结构。
2024-10-22 09:53:02
1371
原创 遗传算法主要是一种**优化算法**,与支持向量机(SVM)或深度神经网络(DNN)等机器学习算法不同,遗传算法并**不直接**用于特征提取或分类等具体任务。它主要作用是**通过优化机制**来寻找最优解
遗传算法本质上是一种优化工具,并不是像SVM或DNN那样的特征提取或分类模型。它通过模拟进化过程优化解空间,因此非常适合用于帮助优化机器学习模型的参数、架构或特征选择。这种优化能力使得遗传算法在组合复杂任务(如特征选择或神经网络结构搜索)时具有重要作用,但它本身不直接参与特征提取或分类任务。
2024-10-22 09:25:53
270
原创 遗传算法基本纲领
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的全局搜索优化算法。它通过模拟自然界中生物进化过程,如选择、交叉、变异和遗传,来求解优化问题。遗传算法属于**进化算法(Evolutionary Algorithms, EAs)**的一类,其基本思想是通过个体适应度的评估和选择,逐步淘汰不良解,保留优良解,最后得到一个近似最优的解。编码:通常将解表示为一个二进制字符串(或其他形式的编码,如实数编码)。种群初始化:生成一个包含多个个体(候选解)的初始种群。适应度函数。
2024-10-22 09:22:00
1132
原创 神经网络之所以强大,是因为它们能够通过复杂的层次结构自动学习数据中的隐藏模式和特征,尤其在处理高维、复杂和非线性数据时表现出色。它们的原理核心可以归纳为以下几个方面:
神经网络之所以强大,是因为它们能够通过复杂的层次结构自动学习数据中的隐藏模式和特征,尤其在处理高维、复杂和非线性数据时表现出色。
2024-10-21 21:29:24
482
原创 在图神经网络(GNN)中,GNN、GCN、GAT三者之间的关系与传统神经网络(NN)、卷积神经网络(CNN)、注意力机制(AT)之间的关系有一定的相似性,但并不是完全相同的。
总结来说,GNN、GCN、GAT 的关系与 NN、CNN、AT 之间的关系有一定的相似性,都是一种泛化关系:GNN 是最基础的框架,GCN 和 GAT 是针对特定需求(卷积和注意力机制)的扩展和增强。但由于处理的输入数据类型不同,图神经网络和传统神经网络在细节上仍有显著差异。在图神经网络(GNN)中,GNN、GCN、GAT三者之间的关系与传统神经网络(NN)、卷积神经网络(CNN)、注意力机制(AT)之间的关系有一定的相似性,但并不是完全相同的。
2024-10-21 16:56:02
317
原创 GCN(图卷积神经网络)中的**信息聚合**和传统聚类算法是不同的概念,尽管它们都涉及到将某些对象的信息整合在一起。下面我将详细解释两者的差异:
虽然GCN中的信息聚合和聚类算法都涉及到某种形式的信息融合或分组,但它们在本质上是不同的。GCN中的信息聚合是图神经网络的一种操作机制,通过逐层邻居信息的传播和更新来构建节点的特征。而传统聚类算法是一种无监督学习方法,其目的是根据数据点的相似性进行分组。GCN关注的是如何通过图结构的邻接关系传递信息,聚类算法则关注如何通过相似性将数据点划分为不同的类。
2024-10-21 15:00:04
1139
原创 图卷积神经网络(Graph Convolutional Network, GCN)与传统的卷积神经网络(Convolutional Neural Network, CNN)确实有很大的不同
卷积核(或过滤器)可以在二维平面(如图像的高度和宽度)上滑动,保持参数共享,减少计算复杂度,进而提取层级结构中的高阶特征。换句话说,GCN 的“卷积核”是在图上进行的,它不再是固定形状的,而是依赖于图的邻接关系。图数据的节点和边之间没有固定的网格结构,因此 CNN 的卷积操作不能直接应用于图上。因此,虽然图卷积神经网络和传统的卷积神经网络之间的操作方式和应用场景有显著差异,但它们共享了通过逐层学习来提取特征的理念。尽管 GCN 处理的是图,而 CNN 处理的是规则的网格,但它们都通过。
2024-10-21 13:43:08
546
原创 在 Python 的神经网络程序(特别是 PyTorch 框架中),`class` 和 `forward()` 是定义神经网络模型的关键部分。它们的作用如下:
在 Python 的神经网络程序(特别是 PyTorch 框架中),是定义神经网络模型的关键部分。
2024-10-20 10:32:27
429
原创 在元学习中,**1-shot**、**5-shot**、和**10-shot**等术语常用于描述少样本学习中的训练条件。这些术语的具体含义是:
在元学习中,、和等术语常用于描述少样本学习中的训练条件。:表示模型在每个类别中只使用进行学习。这是一种极端的少样本学习情况,要求模型能够从非常少的数据中快速学习任务。:表示模型在每个类别中使用进行学习。相比于1-shot学习,5-shot提供了更多的信息供模型学习,但仍属于少样本学习范畴。:表示每个类别中使用进行训练。这通常提供了更多的信息,能使模型更好地泛化到新任务上。
2024-10-19 18:34:06
1279
原创 MAML(Model-Agnostic Meta-Learning)是一种元学习算法,其主要目标是让模型能够通过少量的训练数据和几次梯度更新,在新任务上迅速获得良好的性能。
MAML(Model-Agnostic Meta-Learning)是一种元学习算法,其主要目标是让模型能够通过少量的训练数据和几次梯度更新,在新任务上迅速获得良好的性能。MAML的基本思想是优化模型的初始参数,使得在面对新任务时,这些初始参数只需进行少量调整即可适应新任务。
2024-10-19 17:42:18
875
原创 MAML(Model-Agnostic Meta-Learning)是一种基于优化的元学习算法,旨在让模型在遇到新任务时,通过少量的梯度更新,快速适应该任务。这种算法特别适用于少样本学习场景。
MAML(Model-Agnostic Meta-Learning)是一种基于优化的元学习算法,旨在让模型在遇到新任务时,通过少量的梯度更新,快速适应该任务。这种算法特别适用于少样本学习场景。MAML的核心思想是通过元学习阶段,让模型学习到一个适应性良好的初始化参数,以便在遇到新任务时只需进行少量训练就能取得较好的效果。
2024-10-19 16:38:34
648
原创 深度学习的起源要早于元学习
元学习的核心目标是让模型通过在多个任务中学习,逐步提升它的学习能力,从而能够更快、更高效地适应新任务。元学习则是在深度学习面临小样本、跨任务泛化等挑战下逐渐发展起来的,特别是在2010年中期开始,研究者们开始探索如何使得机器学习模型能够通过学习多个相关任务来改进其适应性和泛化能力。元学习的背景发展与少样本学习(few-shot learning)紧密相关,在数据稀缺或新任务频繁出现的场景下,它提供了有效的解决方案。常用的元学习算法主要分为三大类:基于优化的元学习、基于模型的元学习、以及基于度量的元学习。
2024-10-19 16:22:27
438
原创 在 LaTeX 中,`\setcitestyle{}` 是由 `natbib` 宏包提供的一个命令,用于自定义参考文献的引用格式。
宏包提供的一个命令,用于自定义参考文献的引用格式。这个选项指的是引用文献时使用“作者-年份”格式。格式引用,并且使用圆括号括住引用的作者和年份。这个选项指定引用文献时,引用的括号是圆括号。是定义引用的风格(作者-年份格式),而。是定义引用时使用的括号类型。在 LaTeX 中,
2024-10-14 20:44:50
375
原创 LaTeX 对新段落会自动缩进。如果你不希望某些段落有缩进,可以使用以下几种方法来取消缩进:
默认情况下,LaTeX 对新段落会自动缩进。这样,LaTeX 段落就不会有缩进。大家可以根据自己的需求选择全局或局部取消缩进的方式。如果你只想取消某个特定段落的缩进,可以在段落前添加。
2024-10-14 20:41:15
1251
原创 在 LaTeX 中,如果想同时对文本进行高亮和加粗
在 LaTeX 中,如果想同时对文本进行高亮和加粗,可以结合。高亮颜色默认是黄色,如果需要自定义颜色,可以使用。这种方式会将文本高亮为黄色并加粗显示。
2024-10-14 16:20:03
882
原创 在 LaTeX 中,默认的 `enumerate` 环境会输出 “1. 2. 3.“ 这样的编号。如果你想将编号格式改为(1)(2)(3)这种样式,你可以通过 `enumerate` 包进行自定义。
环境会输出 “1. 2. 3.” 这样的编号。如果你想将编号格式改为(1)(2)(3)这种样式,你可以通过。表示重新定义列表的编号格式为粗体带括号的数字样式。在 LaTeX 中,默认的。
2024-10-13 14:26:20
795
原创 在 LaTeX 中,如何自定义目录中 \section{} 的编号
在 LaTeX 中,若要自定义目录中\section{}的编号(例如输出为1-aa而不是默认的数字),你可以使用命令来取消自动编号,然后手动添加编号,同时使用手动将条目加入到目录中。
2024-10-13 14:25:08
1193
SpringerLink施普林格旗下期刊latex模板下载方法-我已经附上latex模版
2024-03-05
Pycharm配置运行参数设置,这参数怎么设置呢?
2021-07-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人