- 博客(14)
- 收藏
- 关注
原创 (剑指offer-题目笔记(2)-9~11题
剑指offer-题目笔记(1)-3~7题面试题9:用两个栈实现队列面试题10.1:斐波那契数列面试题10.2:青蛙跳台问题面试题9:旋转数组的最小数字面试题9:用两个栈实现队列1.一个栈用来插入2.另一个栈来输出3.当输出时,如果第二个栈为空,则将第一个栈的内容输入到第二个栈面试题10.1:斐波那契数列1.循环递归都可以面试题10.2:青蛙跳台问题1.只有一阶台阶,显然只有一种跳法...
2019-04-06 19:18:10 200
原创 剑指offer-题目笔记(1)-3~7题
剑指offer-题目笔记(1)-3~8题面试题3:数组中重复的数题目一:找出数组中重复的数字题目二:不修改数组找出数组中重复的数字面试题4:二维数组中的查找面试题5:替换空格面试题6:从头到尾打印链表面试题7:重建二叉树面试题8:二叉树的下一个节点面试题3:数组中重复的数题目一:找出数组中重复的数字1.对所有数据排序,再遍历一遍找到重复值。时间复杂度O(n logn)2.利用哈希表储存,遍...
2019-04-03 22:56:01 193
原创 YOLOv1复现之损失函数
关于Pytorch框架导入数据前处理问题主要内容新的改变如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入主要内容本文是作者在复现YOLOv1算法时,所遇到的数...
2019-01-12 19:33:32 4720 11
原创 导入图像数据前处理问题-Pytorch深度学习框架-YOLOv1复现过程
关于利用Pytorch框架进行深度学习前导入的图像数据前处理问题主要内容程序总体框架各部分具体实现读入图像及标签标签文件说明图像随机预处理标签编码读入图像及标签主要内容本文是作者在复现YOLOv1算法时,所遇到的数据导入的问题的处理,数据导入及处理部分也是任何进行深度学习任务的必备操作,之后可能会写YOLOv1整个复现过程的详细解释。文本主要参考的是此项目GitHub,大家可以自行研究。...
2019-01-10 21:58:02 3177 2
原创 网易 Andrew Ng DL课程学习记录 -(1)利用python建立神经网络模型-2
import pandas as pdimport numpy as npdef loaddata(): trainingset=np.matrix([[1,1,1],[2,2,1],[3,3,0],[4,4,0]]) return trainingsetdef actfun(x): return (x>0)*1def dactfun(x): ...
2018-03-30 19:07:48 201
原创 网易 Andrew Ng DL课程学习记录 -(1)利用python建立神经网络模型
建立神经网络模型由于网易深度学习课程只有视频部分,配套的作业还没上线,故只得进行自我练习。课程共分为5个大部分,其中有三个大部分是连续的,剩下两个为补充部分,现笔者已经完成了第一大部分-神经网络和深度学习,为了更好的进行接下来的学习,必须保证这一基础部分完全掌握,所以就利用这一部分吴教授所提到的整个神经网络的构造方法,利用python语言,进行详尽的建模工作,让自己把这部分的知识学扎实。...
2018-03-27 23:01:32 250
原创 英语听力自动断句程序
自动断句程序本程序的最初设计目的是为了实现:输入一个英语听力对话文件,开始播放,每说一句自动暂停,然后选择下一句还是重复该句,直到播放结束。源代码如下:import waveimport numpyimport pylab as plfrom numpy import *# 打开wav文件f = wave.open(r"test1.wav", "rb")params...
2018-02-09 19:03:59 6627
原创 《机器学习实战》-支持向量机(1)
支持向量机几个概念序列最小优化核函数线性可分 -数据可以被分割分割超平面-划分数据的超平面间隔-数据到分割面的距离支持向量-离分割超平面最近的点寻找最大间隔寻找最大间隔线,说明数据点到该线的距离应该尽可能远 但是应该注意,分割线某侧的数据值乘以特征应该为负值(下一小节),所以该线应该在两组数据之间的前提下,尽可能最大分类器求
2018-02-04 13:54:54 246
原创 《机器学习实战》-Logistic回归(2)
Logistic回归示例:从疝气病症预测病马的死亡率数据缺失此示例的数据存在缺失性的问题,所以首先应该解决这个问题 对于某些特征缺失的,如果该特征一般不会取0,那可以用0代替该特征值,在更新梯度公式中,如果该特征值为0,则不会更改其权重值。 对于某些类别缺失的,可以直接将该数据丢弃。测试算法def classifyvector(inx,weight):
2018-02-01 20:04:31 279
原创 《机器学习实战》-Logistic回归(1)
Logistic回归引言书中上来就谈及最优化算法,在我现在的了解里,logistic回归会用到优化算法。logistic回归解决分类问题,就是利用其建立数据的分类分界线而这个分类分界线可能会存在很多,寻找到最好的那个就应该是最优化的问题单位阶跃函数、sigmoid函数,这两个函数具备一定的相似性,由于单位阶跃函数不连续不容易处理,所以用sigmiod函数替代我们希望能够
2018-01-30 20:55:22 261
原创 《机器学习实战》-朴素贝叶斯(2)
朴素贝叶斯通过上次的模型建立,已经可以进行简单的分类,下面将进行另外一个示例的学习—–使用朴素贝叶斯过滤垃圾邮件1.准备数据:切分文本1)string.split() 根据空格切分 2)regEx=re.compile(‘\w*’) regEx.split(string) 分隔符为除字母数字以外的任意字符串 3)利用判定字符串长度大于零,去除掉空字符串 4)利用
2018-01-29 18:25:52 237
原创 《机器学习实战》-朴素贝叶斯(1)
朴素贝叶斯本章概念概率分布朴素贝叶斯分类器前言应利用分类器给出最优的判定结果,同时给出这个判定的概率估计值 概率分类器-假设两个实例词向量分类垃圾邮件分类1.基于贝叶斯决策理论的方法分类贝叶斯决策理论,计算某数据从属于A类的概率与属于B类的概率,选择概率大的那个类别。2.条件概率p(c|x)3.使用条件概率来分类
2018-01-28 21:29:16 478
原创 《机器学习》-学习记录
决策树输入数据应包括训练集和属性集(暂不考虑测试集)这里应首先明确三个概念:类,属性,属性判定。这对于后面分支叶节点的判定非常重要。首先,说类,类就是判定结果。比如在本书中就是,好瓜、坏瓜就是两个类,也可称类别。其次,是属性,属性就是输入所有特征的全部情况,比如在本书中,瓜的色泽,瓜的纹理等。最后,属性判定,是说具体训练集中数据中的属性值,比如本书中,瓜的深绿色,浅绿色,文理清
2018-01-27 00:38:20 185
原创 《机器学习实战》-决策树-画决策树图
def createplot(intree): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[],yticks=[]) createplot.ax1 = plt.subplot(111, frameon=False,**axprops) plottree.tot
2018-01-26 23:31:16 1209 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人