WeightedRandomSampler

from torch.utils.data.sampler import  WeightedRandomSampler
print(list(WeightedRandomSampler([0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], 60, replacement=True)))
# [3, 2, 0, 6, 6, 4, 0, 3, 2, 0, 0, 0, 0, 3, 0, 2, 7, 7, 6, 0, 6, 1, 4, 0, 0, 0, 6, 5, 4, 5, 0, 3, 7, 4, 7, 0, 2, 6, 5, 0, 0, 0, 0, 4, 3, 3, 3, 2, 0, 7, 1, 5, 3, 5, 2, 4, 1, 2, 3, 6]

replcement就是可以继续使用原来的。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值