Minimum Number of Arrows to Burst Balloons
A.题意
There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it’s horizontal, y-coordinates don’t matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.
An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.
这边是题目给的例子
Input:
[[10,16], [2,8], [1,6], [7,12]]
Output:
2
Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).
从题目和例子我们可以知道,在xy平面上放着一些一定直径的气球,垂直于x轴我们发射箭,箭不会停下来,一旦穿过气球,气球会爆炸,题目要你求出在x轴上至少发射多少支箭可以射爆所有气球。
B.思路
思路,这道题目仍然是一道贪心算法的题目,我们按最早结束的思维给气球排序,取出一个最前面的气球,这时候只要后面的气球开始位置小于或等于该气球结束位置,箭就可以穿过这些气球,这就是贪心的策略,下面是代码实现
C.代码实现
class Solution {
public:
int findMinArrowShots(vector<pair<int, int>>& points) {
if (points.size() == 0)
{
return 0;
}
int ret = 0;
sort(points.begin(),points.end(),comp);
int lastEnd = INT_MIN;
for (int i = 0;i < points.size();i++)
{
if (points[i].first == INT_MIN)
{
ret++;
}
if (lastEnd < points[i].first)
{
lastEnd = points[i].second;
ret++;
}
}
return ret;
}
static bool comp(const pair<int, int>& a,const pair<int, int>& b)
{
return a.second < b.second || (a.first < b.first && a.second == b.second);
}
};