力扣-树-完全二叉树结点个数
完全二叉树的结点个数(LeetCode 222)
- 题目描述:给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
- 补充定义:
——完全二叉树:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点 - 解题思路:最无脑的解法就是递归,但没有利用完全二叉树这个特点,即没有简化时间复杂度
利用二叉树特性思路:
1.首先当我们已知这是一个完全二叉树时就会知道当我们知道二叉树层数的时候就可以获得结点个数的范围。当我们知道结点范围之后就可以利用二分法查找的方式得到完全二叉树的结点个数。所以我们要解决的第一步就是获得二叉树的层数
2.规定根节点位于第 0层,完全二叉树的最大层数为 h。根据完全二叉树的特性可知,完全二叉树的最左边的节点一定位于最底层,因此从根节点出发,每次访问左子节点,直到遇到叶子节点,该叶子节点即为完全二叉树的最左边的节点,经过的路径长度即为最大层数 h
3.获得层数为h,即可确定结点个数范围:[2^h , 2^(h+1)-1],接下来就是最重要的也是最难想的地方就是如何判断数字对应的结点是否存在。
4.判断结点是否存在运用的是位运算
图源官方解题
如果第 k 个节点位于第 h 层,则 k 的二进制表示包含 h+1 位,其中最高位是 1,其余各位从高到低表示从根节点到第 k 个节点的路径,0 表示移动到左子节点,1表示移动到右子节点。通过位运算得到第 k 个节点对应的路径,判断该路径对应的节点是否存在,即可判断第 k个节点是否存在。
- 递归代码
- java代码
class Solution {
public int countNodes(TreeNode root) {
if(root==null){
return 0;
}
int count=0;
count+=1;
if(root.left!=null) count+=countNodes(root.left);
if(root.right!=null) count+=countNodes(root.right);
return count;
}
}
- 递归简化版java代码
class Solution{
public int countNodes(TreeNode root) {
return root == null ? 0 : 1 + countNodes(root.left) + countNodes(root.right);
}
}
- python代码
class Solution:
def countNodes(self, root: TreeNode) -> int:
if not root:
return 0
count=0
count+=1
if root.left:
count+=self.countNodes(root.left)
if root.right:
count+=self.countNodes(root.right)
return count
- 利用特性代码
- java代码
class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
int level = 0;
TreeNode node = root;
while (node.left != null) {
level++;
node = node.left;
}
int low = 1 << level, high = (1 << (level + 1)) - 1;
//二分法查抄
while (low < high) {
int mid = (high - low + 1) / 2 + low;
if (exists(root, level, mid)) {
low = mid;
} else {
high = mid - 1;
}
}
return low;
}
public boolean exists(TreeNode root, int level, int k) {
int bits = 1 << (level - 1);//与1相与,即可获得二进制的最后一位
TreeNode node = root;
while (node != null && bits > 0) {
if ((bits & k) == 0) {
node = node.left;
} else {
node = node.right;
}
bits >>= 1;
}
return node != null;
}
}
- 时间复杂度空间复杂度分析(摘抄于官方解题)
(个人还不是很明白这里)