【行业大模型、垂直大模型、医学大模型、AI医生、医学文献数据集、维普医学数据集、数据服务、免费数据集、付费数据集】
医学大模型在在线医生领域的应用价值不可小觑,它们通过深度学习和数据分析,能够辅助医生进行诊断、治疗和疾病管理。这些智能系统可以处理海量的医疗数据,包括患者的病历、实验室检验结果、影像资料和药物信息等,从而提供个性化的医疗建议。然而,训练这些复杂的医学大模型并非易事,面临着众多挑战,如数据获取的困难、隐私保护和信息安全等问题。
国内外医学大模型研究现状分析
在国内外医学大模型研究领域,近年来呈现出快速发展的态势。国际上,诸如Google Health、IBM Watson等大型科技公司纷纷投入巨资进行医学大模型的研发,这些模型在提高诊断准确性、疾病预测及个性化治疗等方面展现出巨大潜力。国内方面,清华大学人工智能研究院(清华AI)在这一领域同样取得了显著成果,AI医生通过自我进化,在甲流、乙流、新冠等8个呼吸道相关疾病的确诊准确率均超过90%,部分准确率超95%[1]。
医学大模型作为医疗人工智能领域的关键一环,其训练效果直接关系到在线医生系统的准确性和可靠性。选择合适的训练语料,是构建高效医学大模型的前提。患者病例、影像资料以及前沿研究成果等多样化的数据资源,为模型提供了丰富的学习素材。其中,患者病例记录了详细的病史、诊断过程及治疗方案,是模型学习临床推理的重要基础;影像资料则以直观的形式展示了疾病在体内的具体表现,有助于提升模型对病症的识别能力;而前沿研究成果的融入,能够使模型紧跟医学发展的步伐,不断吸收新知识,优化诊疗策略。
非公开数据的获取难度较大。医疗数据的隐私性和敏感性要求数据处理过程必须严格遵守相关法律法规,确保患者隐私不被泄露。这限制了可获取数据的范围和数量。因此,外部获取高质量期刊数据成为了一种有效的补充手段。通过合法合规的方式获取这些数据,不仅丰富了训练语料库,还提高了数据的质量和多样性。同时,这也促使我们更加注重数据的筛选和处理,去除冗余和无关信息,提取出具有代表性的特征,以提升模型的训练效率和性能。
所以,期刊数据作为医学大模型训练的重要资源之一,其价值不容忽视。
学术文献资源(期刊文献)付费获取路径
1. 国内主流数据库商付费获取
在国内,期刊文献资源的获取对于医学大模型训练至关重要。目前,主要的期刊文献供应商包括知网、维普和万方。这三家公司在学术资源领域具有重要的地位,但它们提供的服务方式各有侧重,对大模型训练的影响也不尽相同。
公开页面检索,知网、万方并为针对大语言模型训练推出专用的数据集。
维普则上线数据集服务[3],为大模型训练提供了更为高效的解决方案。维普通过支持13个教育部学科数据集的直接购买,满足了不同学科领域的数据需求。同时,维普还提供定制化数据采集、加工、标注等服务,进一步降低了大模型训练的数据准备难度。维普智图数据商城目前支持元数据及原文本地部署或通过API接口批量获取,大大提高了数据的获取效率。并且各个学科总数据基本都在百万条以上,甚至有超过千万的数据,庞大的数据完全能满足大模型训练使用。数据干净,分类统一,元数据清洗标注规范,可以直接使用。
2. 国际数据库商付费获取
直接搜索官网,获取相关服务。目前国际数据库暂没有发现上线文献数据集产品,基本还是传统数据库检索下载服务。可根据具体需求与数据库商进行商谈。
WEB OF SCIENCE:Web of Science是全球最大的引文数据库,由美国科睿唯安公司出版。它不仅包含了从1900年至今的科学、社会科学、艺术和人文科学的引文数据,还提供了完整的引文检索功能。
SCOPUS:Scopus是世界上最大的抽象和引文数据库,由荷兰Elsevier公司开发。它涵盖了从1966年至今的科学、技术、医学、社会科学、艺术和人文科学的文献记录。Scopus数据库的内容独特且全面,包括同行评审的期刊、会议录、书籍和专利。
PUBMED:PubMed是美国国立医学图书馆(National Library of Medicine)发布的医学文献数据库,是全球医学领域最权威的科技文献数据库之一。它包括MEDLINE数据库以及更多的生命科学和生物医学领域的引文和链接。
其他一些医学类的文献检索就不一一列举,有需要的可以直接到浏览器进行检索,多数数据库商目前均只提供TOC单篇使用场景,对于大模型训练的数据集服务并没有提供专门的产品。
学术文献资源(期刊文献)免费资源获取路径
1. 通过Zenodo获取
Zenodo[4],由欧洲核子研究组织CERN支持,是一个专为科学研究长尾效应而生的开放数据存储和分享平台。它的存在,是为了让每一位研究者无论成果大小、格式如何,都能方便地保藏和分享他们的科研成果。Zenodo为每个上传的项目分配独特的数字对象标识符(DOI),赋予其持久的引用价值。它支持元数据管理,让研究人员详细描述他们的研究,便于检索和分类。版本控制功能则让更新和分享变得简单,科研成果的每个阶段都能被精确记录和追踪。
在Zenodo上,可以免费下载他人分享的文献资源或研究数据集。主要覆盖农学、生物科学、社会科学、自然科学、医学、工程技术、人文科学六大学科,共计500万+文献资源,30万+学科研究数据集。但数据保准不统一,需要进一步加工后才能用于大模型训练。**要注意使用用途,避免造成知识产权纠纷。
2. 通过开放OA获取
获取资源质量高,但使用权限有限,可能会涉及版权纠纷,模型训练谨慎使用。
3. AMiner通过限时免费获取相关训练语料
Aminer[5]是由清华大学计算机科学与技术系教授唐杰率领团队建立的,具有完全自主知识产权的新一代科技情报分析与挖掘平台。目前有部分数据集可免费下载使用,或者限时通过开放API获取。
虽各行业大模型如火如荼,高质量学术文献数据集(期刊文献数据集)并没有获得市场的关注。但我们也必须得重视高质量数据集给大模型训练带来的事半功倍的效果。
引用
[1] Li,,Junkai等.Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents[J].arXiv,2024.
[2] Lenharo,,Mariana.GOOGLE AI HAS BETTER BEDSIDE MANNER THAN HUMAN DOCTORS[J].NATURE,2024,625(7996):643-644.
[3] 维普智图数据商城:https://data.vipslib.com/details?id=60
[4] ]Zenodo(欧洲开放文献检索平台):https://zenodo.org/
[5] Aminer(科技情报大数据挖掘与服务系统平台):https://www.aminer.cn/
【网络公开数据整理,侵删】