牛逼了,用Python破解wifi密码

Python真的是无所不能,原因就是因为Python有数目庞大的库,无数的现成的轮子,让你做很多很多应用都非常方便。wifi跟我们的生活息息相关,无处不在。今天从WiFi连接的原理,再结合代码为大家详细的介绍如何利用python来破解WiFi


640?wx_fmt=gif


01.如何连接wifi


首先我们的电脑是如何连接wifi的呢?就拿我们的笔记本电脑来说,我们的笔记本电脑都有无线网卡,如下图所示:

640

当我们连接WiFi时,无线网卡会自动帮助我们扫描附近的WiFi信号,并且会返回WiFi信号的一些信息,包括了网络的名称(SSID),信号的强度,加密和认证的方式等。这些信息我们在进行操作的时候是看不到的。当我们想要连接指定WiFi的时候,我们都需要进行认证,认证的作用就是保护wifi的访问,注意这里的认证不是我们输入的密码,而是将我们输入的密码进行加密的方式。


也就是将我们输入额WiFi密码,进行加密传输的一种方式。大家常用的方式是WPA或者是WPA2PSK,主要是针对个人或家庭网络等,对安全性要求不是很高的用户。如下图所示。

640

640


当我们输入密码后,会弹出提示来告诉我们一些提示的信息,这个提示的信息其实就是在指定认证加密的方式。我们点击“是”之后,就可以开心的上网了。



02.利用pywifi模拟接入


pywifi这个库是第三方的需要提前用pip安装一下,接着我们就利用pywifi模块来模拟这一个过程。首先是判断电脑是否处于WiFi连接的状态,代码如下图所示。

640?wx_fmt=png

首先是创建一个pywifi的对象,然后将电脑无线网卡的信息赋值给ifaces。接着判断ifaces的状态(states)即可知道电脑是否连接无线网络。

上面我们提到无线网卡会返回无线信号的信息,接下来我们就来输出一下我们扫描到的附近的无线信号以及它们的信息。


640

如上图左侧所示,我们输出了无线信号的名称和其对应的加密方式。二代码中的data其实就是一个个的配置文件。这里的配置文件我们可以理解为一个存储了我们连接的无线信号信息的文件,里面包含了无线信号的名称,密码,认证方式等等信息。



03.破解wifi密码


接下来,我们就要利用pywifi来进行破解WiFi密码的操作。我们仿照手动输入密码的过程,并进行验证,如果密码错误的话,我们就不停的更滑密码进行试验直到成功为止。部分的代码如下所示:

640?wx_fmt=png

程序中,我们首先从console中读入我们想要破解额WiFi名称,然后从我们事先设置好的WiFi密码本中,不停的读入WiFi密码,然后配置profile的信息,包括WiFi的名称,认证方式和WiFi的密码。如果密码错误的话,就更换WiFi密码继续进行验证,直到验证正确为止。下图是实验的结果。

640

上述的破解方法也被称为暴力破解法,非常的消耗时间而且不一定正确。但是这是一个试凑的过程,万一成功了也说不准。


当然这种暴力破解需要有一个数据库样本,比如有数十万的破解密码的样本。这样通过充足的时间,可以用来尝试。本文只是从技术的角度来阐述如何利用python来玩WiFi,来学习Pywifi这个库!并不建议大家做任何破坏性的操作和任何不当的行为。

近期热门:

51个Python鲜为人知的秘密特性,老司机看完都惊叹不已

小密圈的趣味实战-微信主题

神器,GitHub2.5万星:视频网站一行Python代码爬

使用Python编写的强大数据处理代码可以根据具体需求而定,下面是一个示例: ``` import pandas as pd # 读取CSV文件 data = pd.read_csv('data.csv') # 查看数据的前几行 print(data.head()) # 数据清洗:删除空值 data = data.dropna() # 数据筛选:选择特定列的数据 selected_data = data[['年龄', '性别', '收入']] # 数据排序:按照收入从高到低排序 sorted_data = selected_data.sort_values(by='收入', ascending=False) # 数据统计:计算平均收入 average_income = selected_data['收入'].mean() # 数据分析:计算男性和女性的平均收入 average_male_income = selected_data[selected_data['性别'] == '男']['收入'].mean() average_female_income = selected_data[selected_data['性别'] == '女']['收入'].mean() # 数据可视化:绘制收入分布直方图 data['收入'].plot.hist() # 数据导出:保存处理后的数据为CSV文件 sorted_data.to_csv('processed_data.csv', index=False) ``` 以上代码演示了如何使用Python中的pandas库进行数据处理。我们首先读取一个CSV文件,并进行数据清洗,删除空值。然后根据需要选择特定列的数据,例如年龄、性别和收入。接着我们对数据进行排序,统计平均收入,并进一步分析男性和女性的平均收入。最后,我们使用数据可视化工具绘制收入分布直方图,并将处理后的数据保存为CSV文件。 这段代码展示了Python在数据处理方面的强大能力,借助pandas库的高效功能,我们可以轻松地完成各种数据清洗、筛选、排序、统计、分析和可视化等任务。无论是处理小型数据集还是大型数据集,Python都能够提供高效且灵活的解决方案。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值