Numpy中花式索引

2人阅读 评论(0) 收藏 举报
分类:
x = numpy.array([1,2,3,4,5,6])
print x[[0,1,2]] # [1 2 3]
print x[[-1,-2,-3]] # [6,5,4]
x = numpy.array([[1,2],[3,4],[5,6]])
print x[[0,1]] # [[1,2],[3,4]]
print x[[0,1],[0,1]] # [1,4] 打印x[0][0]和x[1][1]
print x[[0,1]][:,[0,1]] # 打印01行的01[[1,2],[3,4]]
# 使用numpy.ix_()函数增强可读性
print x[numpy.ix_([0,1],[0,1])] #同上 打印01行的01[[1,2],[3,4]]
x[[0,1],[0,1]] = [0,0]
print x # [[0,2],[3,0],[5,6]]

1,花式索引的索引值是一个数组,对于二维被索引数据来说,索引值可以是一维或者二维。

2,花式索引生成一个新的数组,不像切片,花式索引生成的是新的数据对象。

3,花式索引的索引值为一维数组的时候,索引出数组相应的行,然后拼接成一个新的二维数组。

4,花式索引的索引值为两个维度相同的一维数组凑成的二维向量时,以两个维度作为纵横坐标索引出单值后组合成新的一维向量。

5,由于花式索引不同于切片,实现的是拷贝功能,生成的新数组改变不会影响元数据。

参考
1.python之numpy的基本使用
2.Numpy中的数组花式索引

查看评论

Java的时间处理(续<计算Java时间>)

 Java的时间处理(续)学习在java中计算基本的时间段概述如果你知道怎样在java中使用日期,那么使用时间和它才不多一样简单。这篇文章告诉你怎样把他们的差别联系起来。Robert Nielsen还...
  • cocia
  • cocia
  • 2001-10-28 15:02:00
  • 4780

Numpy 花式索引

#花式索引 #它是指利用整数数组进行索引,先初始化一个8*4的矩阵 #-----2.1 arr = np.empty((8,4)) # print arr for i in range(8): ...
  • SDUTyangkun
  • SDUTyangkun
  • 2017-07-27 09:16:12
  • 989

Numpy中的数组花式索引

先看一下接下来要总结到的所有的用法的IPython交互记录: In [1]: importnumpy as np   In [2]: data =np.random.randn(7,8)   ...
  • grey_csdn
  • grey_csdn
  • 2017-04-06 22:41:25
  • 1917

Python 花式索引

class Test(object): def __getitem__(self, index): print indext = Test()t[0] t[0, 1] t[0,...
  • wizardforcel
  • wizardforcel
  • 2017-01-03 09:09:36
  • 892

Numpy —— 花式索引,整数索引和布尔索引

花式索引 花式索引指的是利用整数数组进行索引 花式索引跟切片不一样,它总是将数据复制到新数组中 1、传入顺序索引数组 In [94]: arr=np.arange(32).reshape(...
  • starter_____
  • starter_____
  • 2018-01-26 18:42:36
  • 57

NumPy之四:高级索引和索引技巧

NumPy官方Quickstart tutorial之高级索引和技巧
  • wangwenzhi276
  • wangwenzhi276
  • 2016-12-02 17:10:40
  • 6336

Numpy攻略系列:高级索引机制之位置列表型索引,布尔型索引

Numpy高级索引技术:高级索引机制之位置列表型索引,布尔型索引
  • u010496337
  • u010496337
  • 2016-01-24 18:51:13
  • 1717

NumPy 高级索引和数组概念

NumPy 高级索引和数组概念调整图像尺寸# 这个代码用于调整图像尺寸 # 来源:NumPy Cookbook 2e Ch2.3import scipy.misc import matplotlib...
  • wizardforcel
  • wizardforcel
  • 2017-05-28 14:51:05
  • 932

Python之numpy教程(二):运算、索引、切片

1.numpy数组的特点在于,大小相等的数组之间,任何算数运算都会将运算应用到元素级。 请看下面的例子: arr = np.array([[1.,2.,3.],[4.,5.,6.]]) arr输出: ...
  • liangzuojiayi
  • liangzuojiayi
  • 2016-05-30 11:01:55
  • 25069

Numpy学习笔记之ndarray的索引和切片

Numpy学习笔记之ndarray的索引和切片 1. 基本索引和切片 一维数组和python列表结构差不多,基本索引和切片得到的结果都是原始数组的视图,修改视图也会修改原始数组。 若想得到副...
  • weq27
  • weq27
  • 2017-04-14 13:58:16
  • 857
    个人资料
    等级:
    访问量: 369
    积分: 64
    排名: 161万+
    文章存档