[lcm][gcd] 分数的最小公倍数

分数的最小公倍数

输入两个分数,输出他们的最小公倍数

输入案例:

3/4 5/6

输出案例:

15/2


解答:
a / b a/b a/b c / d c/d c/d 两个分数,假设他们的最小公倍分数为 x / y x/y x/y
我们事先利用gcd(求最大公因数)把两个分数变成最简分数。

则有 x y / a b = n , x y / c d = m ( n , m 都 是 整 数 ) \frac{x}{y}/\frac{a}{b}=n,\frac{x}{y}/\frac{c}{d}=m(n,m都是整数) yx/ba=n,yx/dc=m(nm)
因为 x y / a b \frac{x}{y}/\frac{a}{b} yx/ba是整数,所以x要能被a整除,b要能被y整除。
同理 x y / c d \frac{x}{y}/\frac{c}{d} yx/dc是整数,所以x要能被c整除,d要能被y整除。
所以x是a和c的最小公倍数,y是b和d的最大公因数。

PS:求最大公因数的方法:辗转相除法

int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}

PS:求a和b的最小公倍数的方法:

x = a / gcd(a,c) * c;

#include<iostream>
using namespace std;
int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}
int main () {
    int a, b, c ,d;
    scanf("%d/%d %d/%d", &a, &b, &c, &d);
    int x = gcd(a,b);
    int y = gcd(c,d);
    a /= x;
    b /= x;
    c /= y;
    d /= y;
    x = a / gcd(a,c) * c;
    y = gcd(b,d);
    if (y == 1) {
        cout << x << endl;
    } else {
        cout << x << "/" << y << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值