蓝桥杯考试 博弈问题的思路

题目

今盒里有n个小球,A、B两人轮流从盒中取球。
每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个。
两人都很聪明,不会做出错误的判断。


每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
轮到某一方取球时不能弃权!
A先取球,然后双方交替取球,直到取完。


被迫拿到最后一个球的一方为负方(输方)
    

编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?


博弈问题的思路:不是单纯的寻找最优解,关心的是一方的行为对另一方的影响 该题目为BASH博弈,为无偏组合游戏,无平局。此时先看另一道更简单的题目

此时有21个石头 每个人可以拿1-3个石头,拿到最后一块石头的赢

反向推到

剩1-3个的时候 我必胜

则剩4的时候必败

同理 5-7必胜 8必败

无偏博弈的方法可以用P态和N态表示  P态 先手必输(我输,对手赢),N态 先手必赢 (我赢)

首先将最终结果设为P态 能到达P态的状态为N态,能到达N态的状态为P态 即

0  1  2  3  4  5  6  7  8 ...

P N  N  N  P N N N N 后面都是循环 所以有多少个球,此时是什么态,即可以推断是先手赢还是后手赢。

再看回本道题目 最后拿到的为负 

0-15分别为

P N P N P N P N N N N N N N N 从第16个循环 0-15 所以只需要求出 N%16 是什么态即可 

static int [] yingfu = {1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1};
	public static int Num(int i)
	{
		int temp = i%15;
		return yingfu[temp];
	}
总体思路,递归:使下一轮为输(P态)的为赢(N态) 0为P态 

static public String fun(int i)
	{
		if(i==0)
			return "赢";
		if(i==1||i==3||i==5||i==7)
			return "输";
		if(i<=8)
			return "赢";	//前几个找规律
		else 
		{
			if(fun(i-1)=="输"||fun(i-3)=="输"||fun(i-7)=="输"||fun(i-8)=="输")	//有一种方案能让对面是输 那我赢
				return "赢";
			return "输";	//没有一种方案能让对手输,那我怎么走都是输
		}
	
	}











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值