题目
今盒里有n个小球,A、B两人轮流从盒中取球。
每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个。
两人都很聪明,不会做出错误的判断。
每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
轮到某一方取球时不能弃权!
A先取球,然后双方交替取球,直到取完。
被迫拿到最后一个球的一方为负方(输方)
编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
博弈问题的思路:不是单纯的寻找最优解,关心的是一方的行为对另一方的影响 该题目为BASH博弈,为无偏组合游戏,无平局。此时先看另一道更简单的题目
此时有21个石头 每个人可以拿1-3个石头,拿到最后一块石头的赢
反向推到
剩1-3个的时候 我必胜
则剩4的时候必败
同理 5-7必胜 8必败
无偏博弈的方法可以用P态和N态表示 P态 先手必输(我输,对手赢),N态 先手必赢 (我赢)
首先将最终结果设为P态 能到达P态的状态为N态,能到达N态的状态为P态 即
0 1 2 3 4 5 6 7 8 ...
P N N N P N N N N 后面都是循环 所以有多少个球,此时是什么态,即可以推断是先手赢还是后手赢。
再看回本道题目 最后拿到的为负
0-15分别为
P N P N P N P N N N N N N N N 从第16个循环 0-15 所以只需要求出 N%16 是什么态即可
static int [] yingfu = {1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1};
public static int Num(int i)
{
int temp = i%15;
return yingfu[temp];
}
总体思路,递归:使下一轮为输(P态)的为赢(N态) 0为P态
static public String fun(int i)
{
if(i==0)
return "赢";
if(i==1||i==3||i==5||i==7)
return "输";
if(i<=8)
return "赢"; //前几个找规律
else
{
if(fun(i-1)=="输"||fun(i-3)=="输"||fun(i-7)=="输"||fun(i-8)=="输") //有一种方案能让对面是输 那我赢
return "赢";
return "输"; //没有一种方案能让对手输,那我怎么走都是输
}
}