深度学习
飘逸慕嫣然
欢迎交流,共同进步!编程中最没用的东西是源代码,最有用的东西是算法和数据结构。
展开
-
一文看懂迁移学习:怎样用预训练模型搞定深度学习?
跟传统的监督式机器学习算法相比,深度神经网络目前最大的劣势是什么?贵。尤其是当我们在尝试处理现实生活中诸如图像识别、声音辨识等实际问题的时候。一旦你的模型中包含一些隐藏层时,增添多一层隐藏层将会花费巨大的计算资源。庆幸的是,有一种叫做“迁移学习”的方式,可以使我们在他人训练过的模型基础上进行小改动便可投入使用。在这篇文章中,我将会讲述如何使用预训练模型来加速解决问题的过程。转载 2017-07-31 11:24:38 · 18434 阅读 · 2 评论 -
自归一化神经网络
这期为大家翻译了一篇2017年6月10日发表在 arXiv 上的 NIPS 投稿论文,这篇文章介绍了一种新的神经网络模型,提出了一种新的激活函数「放缩指数型线性单元(SELUs)」而引进了自归一化属性。时代在时刻变更,而知识也应不断更新,所以学习并翻译了这篇文章,PO了这篇博客,这样也为了能与他人一同讨论、学习、进步。老实讲,这篇文章初看貌似只有一个创新点(就是上文提的新激活函数),但实则深入地看,并不只是如此简单。原创 2017-09-03 10:37:13 · 3500 阅读 · 0 评论