1.11 什么是HIVE
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能
1.12为什么使用HIVE
01 直接使用hadoop所面临的问题
人员学习成本太高
项目周期要求太短
MapReduce实现复杂查询逻辑开发难度太大
02 为什么要使用Hive
操作接口采用类SQL语法,提供快速开发的能力。
避免了去写MapReduce,减少开发人员的学习成本。
功能扩展很方便。1.13HIVE的特点
Ø 可扩展
Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。
Ø 延展性
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
Ø 容错
良好的容错性,节点出现问题SQL仍可完成执行。
1.21HIVE与Hadoop的关系
Hive利用HDFS存储数据,利用MapReduce查询分析数据。用户发出SQL,HIVE处理,转换成MR程序。
1.22
1、 Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,RCFILE等)
SequenceFile是hadoop中的一种文件格式:
文件内容是以序列化的kv对象来组织的
2、只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
3、Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
² db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
² table:在hdfs中表现所属db目录下一个文件夹
² external table:与table类似,不过其数据存放位置可以在任意指定路径
² partition:在hdfs中表现为table目录下的子目录
bucket:在hdfs中表现为同一个表目录下根据hash散列之后的多个文件